DOI QR코드

DOI QR Code

Synthesis and Characterization of New Anthracene-Based Blue Host Material

  • So, Ki-Ho (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, Hyun-Tae (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Shin, Sung-Chul (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Sang-Gyeong (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Dong-Hui (School of Material Science & Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Kyeong-Hoon (LG Elite) ;
  • Oh, Hyeong-Yun (LG Elite) ;
  • Kwon, Soon-Ki (School of Material Science & Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
  • Published : 2009.07.20

Abstract

We designed new anthracene-based host material to increase color purity as well as device efficiency. The new blue host, 9,10-bis(2,4-dimethylphenyl)anthracene (BDA), has highly twisted structure and wide band gap due to ortho interaction between anthracene and introduced 2,4-dimethylphenyl substituents. BDA exhibited deep blue fluorescence in solution (${\lambda}_{max}$ = 410 nm) and in solid state (${\lambda}_{max}$ = 429 nm), respectively, with the wide optical band gap (E = 3.12 eV). Blue-light-emitting OLEDs using obtained host and 2% Flu-DPAN as emitter showed 8 cd/A of high efficiency as well as high color purity [CIE coordinates = (0.15, 015)].

Keywords

References

  1. Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913 https://doi.org/10.1063/1.98799
  2. Tullo, A. H. Chem. Eng. News 2000, 78 (June 26), 20
  3. Tullo, A. H. Chem. Eng. News 2001, 79 (Nov 19), 49
  4. Van Slyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160 https://doi.org/10.1063/1.117151
  5. Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 57, 531 https://doi.org/10.1063/1.103638
  6. Hung, L. S.; Tang, C. W.; Masson, M. G. Appl. Phys. Lett. 1997, 70, 152 https://doi.org/10.1063/1.118344
  7. Park, J. W.; Kim, Y. H.; Jung, S. Y.; Byeon, K. N.; Jang, S. H.; Lee, S. K.; Shin, S. C.; Kwon, S. K. Thin Solid Films 2008, 516, 8381 https://doi.org/10.1016/j.tsf.2008.04.080
  8. Kim, Y. H.; Shin, D. C.; Kim, S. H.; Ko, C. H.; Yu, H. S.; Chae, Y. S.; Kwon, S. K. Adv. Mater. 2001, 13, 1690 https://doi.org/10.1002/1521-4095(200111)13:22<1690::AID-ADMA1690>3.0.CO;2-K
  9. Kim, Y. H.; Jeong, H. C.; Kim, S. H.; Yang, K. Y.; Kwon, S. K. Adv. Func. Mater. 2005, 15, 1799 https://doi.org/10.1002/adfm.200500051
  10. Kim, Y. H.; Kim, H. S.; Ahn, J. H.; Kim, S. H.; Kwon, S. K. J. of Non. Opt. Phy. & Mat. 2004, 13, 649 https://doi.org/10.1142/S0218863504002420
  11. Kim, J. U.; Lee, H. B.; Shin, J. S.; Kim, Y. H.; Joe, Y. K.; Oh, H. Y.; Park, C. G.; Kwon, S. K. Synth. Met. 2005, 150, 27 https://doi.org/10.1016/j.synthmet.2004.12.017
  12. Kim, Y. H.; Lee, S. J.; Jung, S. Y.; Byeon, K. N.; Kim, J.; Shin, S. C.; Kwon, S. K. Bull. Korean Chem. Soc. 2008, 28, 443 https://doi.org/10.5012/bkcs.2007.28.3.443
  13. Tang, C. W.; Vanslyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610 https://doi.org/10.1063/1.343409
  14. Jeon, S. O.; Lee, H. S.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. 2009, 30, 863
  15. Sato, Y. Semicond. Semimet. 2000, 64, 209
  16. Rajeswaren, G.; Ito, M.; Boroson, M.; Barry, S.; Hatwar, T. K.; Kahen, K. B.; Yoneda, Y.; Yokoyama, R.; Yamada, T.; Komiya, N.; Kanno, H.; Takahashi, H. SID 2000 Dig. 2000, 40, 1
  17. O'connor, S. J. M.; Towns, C. R.; O'Dell, R.; Burroughes, J. H. Proc. SPIE-Int. Soc. Opt. Eng. 2001, 4105, 9
  18. Shi, J. M.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201 https://doi.org/10.1063/1.1475361
  19. Chen, C. H.; Tang, C. W.; Shi, J.; Klubeck, K. P. Thin Solid Films 2000, 363, 327 https://doi.org/10.1016/S0040-6090(99)01010-X
  20. He, F.; Tian, L.; Xie, W.; Li, M.; Gao, Q.; Hanif, M.; Zhang, Y.; Cheng, G.; Yang, B.; Ma, Y.; Liu, S.; Shen, J. J. Phys. Chem. C 2008, 112, 12024 https://doi.org/10.1021/jp8029049
  21. Lee, M. T.; Chen, H. H.; Liao, C. H.; Tsai, C. H; Chen, C. H. 2004, 85, 3301 https://doi.org/10.1063/1.1804232
  22. Baldo, M. A.; Forrest, S. R. Phys. Rev. B 2000, 62, 10958 https://doi.org/10.1103/PhysRevB.62.10958
  23. Slooff, L. H.; Polman, A.; Caciallu, F.; Friend, R. H.; Hebbink, G. A.; van Veggel, F.; Reinhoudt, D. N. Appl. Phys. Lett. 2001, 78, 2122 https://doi.org/10.1063/1.1359782
  24. Jo, W. J.; Kim, K. H.; No, H. C.; Shin, D. Y.; Oh, S. J.; Son, J. W.; Kim, Y. H.; Cho, Y. K.; Lee, K. H.; Oh, H. Y.; Kwon, S. K. Synth. Met. 2009, 159, 1359 https://doi.org/10.1016/j.synthmet.2009.03.007
  25. Jones, S.; Atherton, J. C. C. Synth. Commun. 2001, 31, 1799 https://doi.org/10.1081/SCC-100104326

Cited by

  1. The development of anthracene derivatives for organic light-emitting diodes vol.22, pp.22, 2012, https://doi.org/10.1039/c2jm16855c
  2. Chain Length Effect of Dialkoxynaphthalene End-Capped Divinylbenzene for OTFT vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.420
  3. Using Neural Networks to Predict the Red Electroluminescence of Materials vol.26, pp.7, 2013, https://doi.org/10.1007/s10948-012-1690-2
  4. Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit vol.49, pp.41, 2013, https://doi.org/10.1039/c3cc41441h
  5. Color Pure and Stable Blue Light Emitting Material Containing Anthracene and Fluorene for OLED vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1951
  6. Novel quinoxaline derivatives containing arylaminated aceanthrylene for organic red-light emitting diodes vol.88, pp.1, 2009, https://doi.org/10.1016/j.dyepig.2010.04.013