DOI QR코드

DOI QR Code

Local Structure Invariant Potential for InxGa1-xAs Semiconductor Alloys

  • Sim, Eun-Ji (Department of Chemistry and Institute of NanoBio Molecular Assemblies, Yonsei University) ;
  • Han, Min-Woo (Department of Chemistry and Institute of NanoBio Molecular Assemblies, Yonsei University) ;
  • Beckers, Joost (Computational Physics, Faculty of Applied Sciences, Delft University of Technology) ;
  • De Leeuw, Simon (Gorlaeus Laboratories, Leiden Institute of Chemistry)
  • Published : 2009.04.20

Abstract

We model lattice-mismatched group III-V semiconductor $In_{x}Ga_{1-x}$ alloys with the three-parameter anharmonic Kirkwood-Keating potential, which includes realistic distortion effect by introducing anharmonicity. Although the potential parameters were determined based on optical properties of the binary parent alloys InAs and GaAs, simulated dielectric functions, reflectance, and Raman spectra of alloys agree excellently with experimental data for any arbitrary atomic composition. For a wide range of atomic composition, InAs- and GaAs-bond retain their respective properties of binary parent crystals despite lattice and charge mismatch. It implies that use of the anharmonic Kirkwood-Keating potential may provide an optimal model system to investigate diverse and unique optical properties of quantum dot heterostructures by circumventing potential parameter searches for particular local structures.

Keywords

References

  1. Kim, S.; Lim, Y. T.; Soltesz, E. G.; DeGrand, A. M.; Lee, J. Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Nature Biotechnology 2004, 22, 93. https://doi.org/10.1038/nbt920
  2. Kim, S.-W.; Zimmer, J. P.; Ohnishi, S.; Tracy, J. B.; Frangioni, J. V.; Bawendi, M. G. J. Am. Chem. Soc. 2005, 127, 10526. https://doi.org/10.1021/ja0434331
  3. Troccoli, M.; Belyanin, A.; Capasso, F.; Cubukcu, E.; Sivco, D. L.; Cho, A. Y. Nature 2005, 433, 845. https://doi.org/10.1038/nature03330
  4. Elia, A.; Lugara, P. M. ; Giancaspro, C. Opt. Lett. 2005, 30, 988. https://doi.org/10.1364/OL.30.000988
  5. Krenner, H. J.; Stufler, S.; Sabathil, M.; Clark, E. C.; Ester, P.; Bichler, M.; Abstreiter, G.; Finley, J.; Zrenner, A. New J. Phys. 2005, 7, 184. https://doi.org/10.1088/1367-2630/7/1/184
  6. Kim, E.-T.; Madhukar, A.; Ye, Z.; Campbell, J. C. Appl. Phys. Lett. 2004, 84, 3277. https://doi.org/10.1063/1.1719259
  7. Razeghi, M.; Slivken, S. Opto-Elect. Rev. 2003, 11, 85.
  8. Groenen, J.; Carles, R.; Landa, G.; Guerret-Piecourt, C.; Fontaine, C.; Gendry, M. Phys. Rev. B 1998, 58, 10452. https://doi.org/10.1103/PhysRevB.58.10452
  9. Soni, R. K. J. Cryst. Growth 1989, 94, 347. https://doi.org/10.1016/0022-0248(89)90007-9
  10. Jusserand, B.; Sapriel, J. Phys. Rev. B 1981, 24, 7194. https://doi.org/10.1103/PhysRevB.24.7194
  11. Manor, R.; Brafman, O.; Fekete, D.; Sarfaty, R. Phys. Rev. B 1993, 47, 9492. https://doi.org/10.1103/PhysRevB.47.9492
  12. Shen, J. L.; Chang, I. M.; Shu, Y. M.; Chen, Y. F.; Chang, S. Z.; Lee, S. C. Phys. Rev. B 1994, 50, 1678. https://doi.org/10.1103/PhysRevB.50.1678
  13. Baroni, S.; de Gironcoli, S.; Giannozzi, P. Phys. Rev. Lett. 1990, 65, 84. https://doi.org/10.1103/PhysRevLett.65.84
  14. Jusserand, B.; Mollot, F.; Planel, R.; Molinary, E.; Baroni, S. Surf. Sci. 1992, 267, 171. https://doi.org/10.1016/0039-6028(92)91114-Q
  15. Bonneville, B. Phys. Rev. B 1981, 24, 1987. https://doi.org/10.1103/PhysRevB.24.1987
  16. Sim, E.; Beckers, J.; de Leeuw, S. W.; Thorpe, M. F.; Ratner, M. A. J. Chem. Phys. 2005, 122, 174702. https://doi.org/10.1063/1.1883628
  17. Kirkwood, J. G. J. Chem. Phys. 1939, 7, 506. https://doi.org/10.1063/1.1750479
  18. Keating, P. N. Phys. Rev. 1966, 145, 637. https://doi.org/10.1103/PhysRev.145.637
  19. Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer-Verlag: Berlin, 1996.
  20. Ewald, P. Ann. Phys. 1921, 64, 253.
  21. Pollock, E. L.; Glosli, J. Comp. Phys. Commun. 1996, 95, 93. https://doi.org/10.1016/0010-4655(96)00043-4
  22. Cai, Y.; Thorpe, M. F. Phys. Rev. B 1992, 46, 15872; 15879.
  23. Poerschke, R. Semiconductors: Group IV Elements and III-V Compounds; Madelung, O., Ed.; Springer-Verlag: New York, 1991.
  24. Thorpe, M. F.; de Leeuw, S. W. Phys. Rev. B 1986, 33, 8490. https://doi.org/10.1103/PhysRevB.33.8490
  25. Handbook of Optical Constants of Solids; Palik, E. D., Ed.; Academic Press: Boston, 1985.
  26. Bernasconi, M.; Colombo, L.; Miglio, L.; Benedek, G. Phys. Rev. B 1991, 43, 14447. https://doi.org/10.1103/PhysRevB.43.14447
  27. Kim, O. K.; Spitzer, W. G. J. Appl. Phys. 1979, 50, 4362. https://doi.org/10.1063/1.326422
  28. Elliott, R. J.; Krumhansl, J. A.; Leath, P. L. Rev. Mod. Phys. 1971, 46, 465. https://doi.org/10.1103/RevModPhys.46.465
  29. Vegard, L. Z. Phys. 1921, 5, 17. https://doi.org/10.1007/BF01349680
  30. Balzarotti, A.; Motta, N.; Kisiel, A.; Zimnal-Starnawska, M.; Czyzyk, M. T.; Podgony, M. Phys. Rev. B 1985, 31, 7526. https://doi.org/10.1103/PhysRevB.31.7526
  31. Look at any introductory solid state physics book, such as Kittel, C. Introduction to Solid State Physics, 5th ed.; John Wiley & Sons: New York, 1976.
  32. Richter, H.; Wang, Z. P.; Ley, L. Solid State Commun. 1981, 39, 625. https://doi.org/10.1016/0038-1098(81)90337-9
  33. Fuchs, H. D.; Etchegoin, P.; Cardona, M.; Itoh, K.; Haller, E. E. Phys. Rev. Lett. 1993, 70, 1715. https://doi.org/10.1103/PhysRevLett.70.1715
  34. Zhang, J. M.; Giehler, M.; Göbel, A.; Ruf, T.; Cardona, M.; Haller, E. E.; Itoh, K. Phys. Rev. B 1998, 57, 1348. https://doi.org/10.1103/PhysRevB.57.1348

Cited by

  1. Rigorous statistical thermodynamical model for lattice dynamics in alloys vol.100, pp.14, 2019, https://doi.org/10.1103/physrevb.100.144205
  2. Structural and optical study of alternating layers of In and GaAs prepared by magnetron sputtering vol.24, pp.3, 2019, https://doi.org/10.11144/javeriana.sc24-3.saos
  3. Structural and optical study of alternating layers of In and GaAs prepared by magnetron sputtering vol.24, pp.3, 2019, https://doi.org/10.11144/javeriana.sc24-3.saos