DOI QR코드

DOI QR Code

Electrochemical Detection of Glutathione on SAMs on Gold Using an Electroactive Quininoid-Type Molecule

  • Kim, So-Hyun (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Jae-Il (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Park, Hye-Ri (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Mi-Kyoung (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Chong, Yoo-Hoon (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Yeo, Woon-Seok (Department of Bioscience and Biotechnology, Konkuk University)
  • Published : 2009.11.20

Abstract

In this work, we describe a new sensor that specifically responds to biothiols, i.e., glutathione (GSH), in solution. An electrochemical transducing strategy was utilized and cyclic voltammetry (CV) was employed to monitor the presence of GSH in real time. Our approach harnessed self-assembled monolayers (SAMs) on gold consisting of an alkanethiolate which was terminated by electroactive quininoid moiety. Prior to thiol molecule treatment, the characterisitc reversible redox peaks of the electroactive quininoid group was observed, while the reduction peak was dramatically shifted upon a treatment of GSH. This sensor showed the capability to detect the GSH in solution in the range of 1 mM $\sim$ 100 aM. We believe that this strategy will provide an important tool for accurate, sensitive, rapid, and low-cost determination of GSH.

Keywords

References

  1. Min, D.-H.; Su, J.; Mrksich, M. Angew. Chem. Int. Ed. 2004, 43, 5973 https://doi.org/10.1002/anie.200461061
  2. Yi, L.; Li, H.; Liu, L.; Zhang, C.; Xi, Z. Angew. Chem. Int. Ed. 2009, 48, 4034 https://doi.org/10.1002/anie.200805693
  3. Drummond, T. G.; Hill, M. G.; Barton, J. K. Nature Biotechnol. 2003, 21, 1192 https://doi.org/10.1038/nbt873
  4. Baker, G. A.; Desikan, R.; Thundat, T. Anal. Chem. 2008, 80, 4860 https://doi.org/10.1021/ac702588b
  5. Healy, D. A.; Hayes, C. J.; Leonard, P.; McKenna, L.; O'Kennedy, R. Trends Biotechnol. 2007, 25, 125 https://doi.org/10.1016/j.tibtech.2007.01.004
  6. Xu, X.; Zhao, Z.; Qin, L.; Wei, W.; Levine, J. E.; Mirkin, C. A. Anal. Chem. 2008, 80, 5616 https://doi.org/10.1021/ac8007016
  7. Bonham, A. J.; Braun, G.; Pavel, I.; Moskovits, M.; Reich, N. O. J. Am. Chem. Soc. 2007, 129, 14572 https://doi.org/10.1021/ja0767837
  8. Fang, S.; Lee, H. J.; Wark, A. W.; Corn, R. M. J. Am. Chem. Soc. 2006, 128, 14044 https://doi.org/10.1021/ja065223p
  9. Willner, I.; Baron, R.; Willner, B. Biosens. Bioelectron. 2007, 22, 1841 https://doi.org/10.1016/j.bios.2006.09.018
  10. Moskatelo, D.; Polanc, S.; Kosmrlj, J.; Vukovic, L.; Osmak, M. Pharmacol. Thoxicol. 2002, 91, 258 https://doi.org/10.1034/j.1600-0773.2002.910507.x
  11. Guttman, A.; Gao, H.-G.; Haas, R. Clin. Chem. 2001, 47, 1467
  12. Nekrassova, O.; White, P. C.; Threlfell, S.; Hignett, G.; Wain, A. J.; Lawrence, N. S.; Davis, J.; Compton, R. G. Analyst 2002, 127, 797 https://doi.org/10.1039/b202780c
  13. Mrksich, M. ACS Nano 2008, 2, 7
  14. Lee, J. R.; Lee, J.; Kim, S. K.; Kim, K. P.; Park, H. S.; Yeo, W.-S. Angew. Chem. Int. Ed. 2008, 47, 9518 https://doi.org/10.1002/anie.200803893

Cited by

  1. Self-assembled monolayers (SAMs) for electrochemical sensing vol.15, pp.7-8, 2011, https://doi.org/10.1007/s10008-011-1493-6
  2. Selective Extraction and Quantification of Glutathione using Maleimide-Presenting Gold Nanoparticles vol.35, pp.10, 2014, https://doi.org/10.5012/bkcs.2014.35.10.3047
  3. Ultrasensitive and label-free detection of creatine based on CdO nanoparticles: a real sample approach vol.41, pp.14, 2017, https://doi.org/10.1039/C6NJ04101A
  4. -glutathione sensor based on PEG-conjugated functionalized CNT nanocomposites: a real sample analysis vol.41, pp.19, 2017, https://doi.org/10.1039/C7NJ01704A
  5. Facile Method for Development of Ligand‐Patterned Substrates Induced by a Chemical Reaction vol.17, pp.21, 2009, https://doi.org/10.1002/chem.201100084
  6. Selective Analysis of Thiol-Containing Molecules Using Nanoengineered Micro Gold Shells and LDI-TOF MS vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.3076
  7. Sensitive L-leucine sensor based on a glassy carbon electrode modified with SrO nanorods vol.183, pp.12, 2016, https://doi.org/10.1007/s00604-016-1983-4
  8. A glutathione biosensor based on a glassy carbon electrode modified with CdO nanoparticle-decorated carbon nanotubes in a nafion matrix vol.183, pp.12, 2016, https://doi.org/10.1007/s00604-016-1987-0
  9. A reliable electrochemical approach for detection of testosterone with CuO-doped CeO2 nanocomposites-coated glassy carbon electrode vol.32, pp.4, 2009, https://doi.org/10.1007/s10854-021-05257-2
  10. Tetrahydrofuran Highly Enhances SAMDI Efficiency vol.42, pp.3, 2009, https://doi.org/10.1002/bkcs.12210