참고문헌
- Harborne, J. B.; Williams, C. A. Phytochemistry 2000, 55, 481 https://doi.org/10.1016/S0031-9422(00)00235-1
- Dixon, R. A.; Paiva, N. L. Plant Cell 1995, 7, 1085 https://doi.org/10.1105/tpc.7.7.1085
- Tahara, S. A. Biosci. Biotechnol. Biochem. 2007, 71, 1387 https://doi.org/10.1271/bbb.70028
- Ibrahim, R. K.; Bruneau, A.; Bantigies, B. Plant Mol. Biol. 1998, 36, 1 https://doi.org/10.1023/A:1005939803300
- Jones, P.; Vogt, T. Planta 2001, 213, 164 https://doi.org/10.1007/s004250000492
- Ibrahim, R. K.; De Luca, V.; Khouri, H. E.; Latchinian, L.; Brisson, L.; Charest, P. M. Phytochemistry 1987, 26, 1237 https://doi.org/10.1016/S0031-9422(00)81789-6
- Joshi, C. P.; Chiang, V. L. Plant Mol. Biol. 1998, 37, 663 https://doi.org/10.1023/A:1006035210889
- Lam, K. C.; Ibrahim, R. K.; Behdad, B.; Dayanandan, S. Genome 2007, 50, 1001 https://doi.org/10.1139/G07-077
- Ibdah, M.; Zhang, X. H.; Shcmidt, J.; Vogt, T. J. Biol. Chem. 2003, 278, 43961 https://doi.org/10.1074/jbc.M304932200
- Park, S. H.; Kim, B. G.; Lee, S. H.; Lim, Y.; Cheong, Y.; Ahn, J.-H. Bull. Korean Chem. Soc. 2007, 28, 2248 https://doi.org/10.5012/bkcs.2007.28.12.2248
- Kopycki, J. G.; Stubbs, M. T.; Brandt, W.; Hagemann, M.; Porzel, A.; Schmidt, J.; Schliemann, W.; Zenk, M. H.; Vogt, T. J. Biol. Chem. 2008, 283, 20888 https://doi.org/10.1074/jbc.M801943200
- Lee, Y. J.; Kim, B. G.; Lim, Y.; Chenog, Y.; Ahn, J.-H. Planta 2008, 227, 641 https://doi.org/10.1007/s00425-007-0646-4
- Ferrer, J.-L.; Austin, M. B.; Stewart, Jr., C.; Noel, J. P. Plant Physiol. Biochem. 2008, 46, 356 https://doi.org/10.1016/j.plaphy.2007.12.009
- Zubieta, C.; He, X.-Z.; Dixon, R. A.; Noel, J. P. Nature Struc. Biol. 2001, 8, 271 https://doi.org/10.1038/85029
- Zubieta, C.; Kota, P.; Ferrer, J.-L.; Dixon, R. A.; Noel, J. P. Plant Cell 2002, 14, 1265 https://doi.org/10.1105/tpc.001412
- Kim, B. G.; Lee, Y.; Hur, H.-G.; Lim, Y.; Ahn, J.-H. Phytochemistry 2006, 67, 387 https://doi.org/10.1016/j.phytochem.2005.11.022
- Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cryst. 1993, 26, 283 https://doi.org/10.1107/S0021889892009944
- Kim, D. H.; Kim, B. G.; Park, S. H.; Kim, N. Y.; Lee, Y. J.; Min, S. Y.; Park, Y.-B.; Lee, J.-B.; Kim, J.-C.; Lim, Y.; Chong, Y.; Ahn, J.-H. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 114 https://doi.org/10.3839/jksabc.2009.022
피인용 문헌
- Structure-function analyses and molecular modeling of caffeic acid-O-methyltransferase and caffeoyl-CoA-O-methyltransferase: Revisiting the basis of alternate methylation pathways during monolignol biosynthesis vol.60, pp.2, 2013, https://doi.org/10.1002/bab.1075
- Function Analysis of Caffeoyl-CoA O-Methyltransferase for Biosynthesis of Lignin and Phenolic Acid in Salvia miltiorrhiza vol.181, pp.2, 2017, https://doi.org/10.1007/s12010-016-2231-4
- Plant Flavonoid O-Methyltransferases: Substrate Specificity and Application and Application vol.53, pp.5, 2009, https://doi.org/10.1007/s12374-010-9126-7
- Ceriporia lacerata DMC1106, a new endophytic fungus: Isolation, identification, and optimal medium for 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone production vol.18, pp.4, 2009, https://doi.org/10.1007/s12257-012-0846-z
- Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene vol.22, pp.9, 2009, https://doi.org/10.3390/ijms22094345