DOI QR코드

DOI QR Code

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik (School of Display and Chemical Engineering, College of Engineering, Yeungnam University)
  • Published : 2009.07.20

Abstract

One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

Keywords

References

  1. Sheppard, L. M. Am. Ceram. Soc. Bull. 1990, 31, 1801
  2. Wu, C. I.; Kahn, A.; Hellmann, E. S.; Buchanan, D. N. Appl. Phys. Lett. 1998, 73, 1346 https://doi.org/10.1063/1.122158
  3. Bonard, J. M.; Kind, H.; Stockli, A. T.; Nilsson, L. O. Solid-State Electron. 2001, 45, 893 https://doi.org/10.1016/S0038-1101(00)00213-6
  4. Haber, J. A.; Gibbons, P. C.; Buhro, W. E. Chem. Mater. 1998, 10, 4062 https://doi.org/10.1021/cm980481+
  5. Zhang, Y.; Liu, J.; He, R.; Zhang, Q.; Zhang, X.; Zhu, J. Chem. Mater. 2001, 13, 3899 https://doi.org/10.1021/cm001422a
  6. Wu, Q.; Hu, Z.; Wang, X.; Lu, Y.; Huo, K.; Deng, S.; Xu, N.; Shen, B.; Zhang, R.; Chen, Y. J. Mater. Chem. 2003, 13, 2024 https://doi.org/10.1039/b303987k
  7. Liu, C.; Hu, Z.; Wu, Q.; Wang, X.; Chen, Y.; Sang, H.; Zhu, J.; Deng, S.; Xu, N. J. Am. Chem. Soc. 2005, 127, 1318 https://doi.org/10.1021/ja045682v
  8. Shi, S.-C.; Chen, C.-F.; Chattopadhyay, S.; Lan, Z.-H.; Chen, K.-H.; Chen, L.-C. Adv. Func. Mater. 2005, 15, 781 https://doi.org/10.1002/adfm.200400324
  9. Shi, S.-C.; Chattopadhyay, S.; Chen, C.-F.; Chen, K.-H.; Chen, L.-C. Chem. Phys. Lett. 2006, 418, 152 https://doi.org/10.1016/j.cplett.2005.10.107
  10. Tondare, V. N.; Balasubramanian, C.; Shene, S. V.; Joag, D. S.; Godbole, V. P.; Bhoraskra, S. V. Appl. Phys. Lett. 2002, 80, 4813 https://doi.org/10.1063/1.1482137
  11. Wu, Q.; Hu, Z.; Wang, X.; Lu, Y.; Chen, X.; Xu, H.; Chen, Y. J. Am. Chem. Soc. 2003, 125, 10176 https://doi.org/10.1021/ja0359963
  12. Yin, L.-W.; Bando, Y.; Zhu, Y.-C.; Li, M.-S.; Tang, C.-C.; Golberg, D. Adv. Mater. 2005, 17, 213 https://doi.org/10.1002/adma.200400105
  13. Wu, Q.; Hu, Z.; Wang, X.; Chen, Y.; Lu, Y. J. Phys. Chem. B 2003, 107, 9726 https://doi.org/10.1021/jp035071+
  14. Jung, W.-S.; Joo, H. U. J. Crystal Growth 2005, 285, 566 https://doi.org/10.1016/j.jcrysgro.2005.09.004
  15. Caceres, P. G.; Schmid, H. K. J. Am. Ceram. Soc. 1994, 77, 977 https://doi.org/10.1111/j.1151-2916.1994.tb07255.x
  16. Miao, W.-G.; Wu, Y.; Zhou, H.-P. J. Mater. Sci. 1997, 32, 1969 https://doi.org/10.1023/A:1018589831042
  17. Fu, R.; Zhou, H.; Chen, L.; Wu, Y. Mater. Sci. Eng. A 1999, 266, 44 https://doi.org/10.1016/S0921-5093(99)00047-7
  18. Jung, W.-S.; Ahn, S.-K. J. Mater. Chem. 1994, 4, 949 https://doi.org/10.1039/jm9940400949
  19. Jung, W.-S.; Joo, H. U. Physica E 2008, 40, 833 https://doi.org/10.1016/j.physe.2007.10.051
  20. Joo, H. U.; Jung, W.-S. J. Mater. Proc. Technol. 2008, 204, 498 https://doi.org/10.1016/j.jmatprotec.2008.01.028
  21. Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89 https://doi.org/10.1063/1.1753975

Cited by

  1. The Preparation of Alumina Particles Wrapped in Few-layer Graphene Sheets and Their Application to Dye-sensitized Solar Cells vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1579
  2. Enhanced Photoelectrochemical Response of Graphene-Coated Al2O3-TiO2Nanocomposite Photoanodes vol.538, pp.1, 2011, https://doi.org/10.1080/15421406.2011.564094
  3. Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites vol.33, pp.10, 2009, https://doi.org/10.5012/bkcs.2012.33.10.3258
  4. AlN hollow-nanofilaments by electrospinning vol.26, pp.8, 2009, https://doi.org/10.1088/0957-4484/26/8/085603