DOI QR코드

DOI QR Code

Kinetic Study of the Electrooxidation of Mefenamic Acid and Indomethacin Catalysed on Cobalt Hydroxide Modified Glassy Carbon Electrode

  • Saghatforoush, Lotfali. (Department of Chemistry, Faculty of Science, Payame Noor University) ;
  • Hasanzadeh, Mohammad. (Department of Chemistry, Faculty of Science, Payame Noor University) ;
  • Karim-Nezhad, Ghasem. (Department of Chemistry, Faculty of Science, Payame Noor University) ;
  • Ershad, Sohrab. (Department of Chemistry, Faculty of Science, Payame Noor University) ;
  • Shadjou, Nasrin. (Department of Chemistry, Faculty of Science, Payame Noor University) ;
  • Khalilzadeh, Balal. (Department of Chemistry, Faculty of Science, Arak University) ;
  • Hajjizadeh, Maryam. (Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology)
  • Published : 2009.06.20

Abstract

Electrocatalytic oxidation of two anti-inflammatory drugs (Mefenamic acid and Indomethacin) was investigated on a cobalt hydroxide modified glassy carbon (CHM-GC) electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry and chronoamperometry techniques as well as steady state polarization measurements. Voltammetric studies indicated that in the presence of under study drugs, the anodic peak current of low-valence cobalt species increased, followed by a decrease in the corresponding cathodic current. This result indicates that the drugs were oxidized via cobalt hydroxide species immobilized on the electrode surface via an E$\acute{C}$ mechanism. A mechanism based on the electrochemical generation of Co (IV) active sites and their subsequent consumption by the drugs in question was also investigated. The constants rate of the catalytic oxidation of the drugs and the electron-transfer coefficients reported.

Keywords

References

  1. Zen, J. M.; Kumar A. S.; Tsai, D. M. Electroanalysis 2003, 15, 1073. https://doi.org/10.1002/elan.200390130
  2. Redepenning, J. G. Trends Anal. Chem. 1987, 6, 18. https://doi.org/10.1016/0165-9936(87)85014-8
  3. Mortimer, R. J. Chem. Soc. Rev. 1997, 26, 147. https://doi.org/10.1039/cs9972600147
  4. Silva, G. C.; Fugivara, C. S.; Tremiliosi, F. G.; Sumodjo, P. T. A.; Benedetti, A. V. Electrochim. Acta 2002, 47,1875. https://doi.org/10.1016/S0013-4686(02)00030-0
  5. Barbero, C.; Planes, G. A.; Miras, M. C. Electrochem. Commun. 2001, 3, 113. https://doi.org/10.1016/S1388-2481(01)00107-2
  6. Nkeng, P.; Koening, J. F.; Gautier, J. L.; Chartier, P.; Poillerat, G. J. Electrochem. Soc. 1996, 402, 81.
  7. Zhu, Y.; Li, H.; Koltypin, Y.; Gedanken, A. J. Mater. Chem. 2002, 12, 729. https://doi.org/10.1039/b107750c
  8. Schumacher, L. C.; Holzhueter, I. B.; Hill, I. R.; Dignam, K. J. Electrochim. Acta 1990, 35, 975. https://doi.org/10.1016/0013-4686(90)90030-4
  9. Nakaoka, K.; Nakayama, M.; Ogura, K. J. Electrochem. Soc. 2002, 149C, 159.
  10. Jafarian, M.; Mahjani, M. G.; Heli, H.; Gobal, F.; Khajehsharifi, H.; Hamedi, M. H. Electrochim. Acta 2003, 48, 3423. https://doi.org/10.1016/S0013-4686(03)00399-2
  11. Casella, I. G. J. Electroanal. Chem. 2002, 520, 119. https://doi.org/10.1016/S0022-0728(02)00642-3
  12. Wang, J. Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine; VCH: New York, U. S. A., 1996.
  13. Kissenger, P. T.; Heineman W. R. Laboratory Techniques in Electroanalytical Chemistry; Dekker: New York, U. S. A., 1996.
  14. Ozkan, S. A.; Uslu, B.; Aboul-Enein, H. Y. Anal. Chem. 2003, 33, 155. https://doi.org/10.1021/ac60169a056
  15. Smyth, M. R.; Vos, J. G. Analytical Voltammetry; Elsevier Science: Amsterdam, 1992.
  16. Townsend, K. P.; Praticò, D. FASEB. J. 2005, 19, 1592. https://doi.org/10.1096/fj.04-3620rev
  17. McGeer, P. L.; Schulzer, M.; McGeer, E. G. Neurology 1996, 47, 425. https://doi.org/10.1212/WNL.47.2.425
  18. Breitner, J. C. S.; Welsh, K. A.; Helms, M. J.; Gaskell, P. C.; Gau B. A.; Roses, A. D.; Pericak-Vance, M. A.; Saunders, A. M. Neurobiol. Aging 1995, 16, 523. https://doi.org/10.1016/0197-4580(95)00049-K
  19. Tendera, M.; Wojakowski, W. Thromb. Res. 2003, 110, 355. https://doi.org/10.1016/j.thromres.2003.08.003
  20. Hennekens, C. H. Am. J. Manag. Care 2002, 8, S691.
  21. Brogden, R. N.; Heel, R. C.; Speight, T. M.; Avery, G. S. Drugs 1981, 22, 165. https://doi.org/10.2165/00003495-198122030-00001
  22. Evens, R. P. Am. J. Hosp. Pharm. 1979, 36, 622.
  23. Niopas, I.; Mamzoridi, K. J. Chromatogr. B 1994, 656, 447. https://doi.org/10.1016/0378-4347(94)00116-2
  24. Or, S.; Bozkurt, A. J. Int. Med. Res. 1988, 16, 167.
  25. Ali, A. M. M. J. Pharmaceutical. Biomed. Anal. 1999, 18, 1005. https://doi.org/10.1016/S0731-7085(98)00111-3
  26. Sagraves, R.; Pediatr, J. Health Care 2002, 16, 306.
  27. Shaffer, C. L.; Gal, P.; Ransom, J. L.; Carlos, R. Q.; Smith, M. S.; Davey, A. M.; Dimagulia, M. A. Crit. Care Med. 2002, 30, 343. https://doi.org/10.1097/00003246-200202000-00013
  28. Guissou, P.; Cuisinaud, G.; Sassard, J. J. Chromatogr. 1983, 277, 368. https://doi.org/10.1016/S0378-4347(00)84860-4
  29. Krishna, R.; Riggs, K.W.; Walker, M. P. R.; Kwan, E.; Rurak, D.W. J. Chromatogr. 1995, B 674, 65.
  30. Singh, A. K.; Jang, Y.; Mishra, U. J. Chromatogr. 1991, 568, 351. https://doi.org/10.1016/0378-4347(91)80173-A
  31. Cooper, J. K.; McKay, G.; Hawes, E. M.; Midha, K. K. J. Chromatogr. 1982, 233, 289. https://doi.org/10.1016/S0378-4347(00)81755-7
  32. Jerrold, B. L.; Paloucek, F. P. Poisoning and Toxicology Handbook; Informa Healthcare: New York, U.S.A., 2008; p 373, 431.
  33. Muraoka, S.; Miura, T. Life Sci. 2003, 72, 1897. https://doi.org/10.1016/S0024-3205(03)00012-2
  34. Martindale, P. K. The Complete Drug References; Pharmaceutical Press: 1999; p 51.
  35. Barbero, C.; Planes, G. A.; Miras, M. C. Electrochem. Commun. 2001, 3, 113. https://doi.org/10.1016/S1388-2481(01)00107-2
  36. Bruckenstein, S.; Shay, M. Electrochimica. Acta 1985, 30, 851. https://doi.org/10.1016/0013-4686(85)80140-7
  37. Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley: New York, U. S. A., 2001; p 591.
  38. Houshmand, M.; Jabbari, A.; Heli, H.; Hajjizadeh, M.; Moosavi- Movahedi, A. A. J. Solid State Electrochem. 2008, 12, 1117. https://doi.org/10.1007/s10008-007-0454-6
  39. Hajjizadeh, M.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A. A.; Haghgoo, S. Electrochimica. Acta 2007, 53, 1766. https://doi.org/10.1016/j.electacta.2007.08.026
  40. Liu, L.; Song, J. Anal. Biochem. 2006, 354, 22. https://doi.org/10.1016/j.ab.2006.04.015
  41. Nagaraja, P.; Vasantha, R. A.; Yathirajan, H. S. J. Pharm. Biomed. Anal. 2003, 31, 563. https://doi.org/10.1016/S0731-7085(02)00465-X
  42. Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley and Sons: New York, U. S. A., 2001; p 163.
  43. Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley and Sons: New York, U. S. A., 2001; p 503.

Cited by

  1. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite vol.43, pp.12, 2013, https://doi.org/10.1007/s10800-013-0609-3
  2. Recent advances in electrochemical and electrochemiluminescence based determination of the activity of caspase-3 vol.184, pp.10, 2017, https://doi.org/10.1007/s00604-017-2466-y
  3. Advances in nanomaterial based optical biosensing and bioimaging of apoptosis via caspase-3 activity: a review vol.185, pp.9, 2018, https://doi.org/10.1007/s00604-018-2980-6
  4. Ascorbic acid electrocatalytic activity in different electrolyte solutions using electrodeposited Co(OH)2 pp.1862-0760, 2019, https://doi.org/10.1007/s11581-019-02845-5
  5. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review vol.228, pp.None, 2009, https://doi.org/10.1016/j.cej.2013.05.061
  6. Cobalt Oxide Electrodes-Problem and a Solution Through a Novel Approach using Cetyltrimethylammonium Bromide (CTAB) vol.57, pp.2, 2009, https://doi.org/10.1080/01614940.2015.1035192
  7. Facial growth of Co(OH)2 nanoflakes on stainless steel for supercapacitors: effect of deposition potential vol.30, pp.6, 2009, https://doi.org/10.1007/s10854-019-00849-5
  8. Boron-doped diamond electrode as efficient sensing platform for simultaneous quantification of mefenamic acid and indomethacin vol.105, pp.None, 2009, https://doi.org/10.1016/j.diamond.2020.107785
  9. Ultrasensitive and label free electrochemical immunosensor for detection of ROR1 as an oncofetal biomarker using gold nanoparticles assisted LDH/rGO nanocomposite vol.11, pp.1, 2009, https://doi.org/10.1038/s41598-021-94380-5