DOI QR코드

DOI QR Code

Classification and Regression Tree Analysis for Molecular Descriptor Selection and Binding Affinities Prediction of Imidazobenzodiazepines in Quantitative Structure-Activity Relationship Studies

  • Atabati, Morteza (School of Chemistry, Damghan University of Basic Sciences) ;
  • Zarei, Kobra (School of Chemistry, Damghan University of Basic Sciences) ;
  • Abdinasab, Esmaeil (School of Chemistry, Damghan University of Basic Sciences)
  • Published : 2009.11.20

Abstract

The use of the classification and regression tree (CART) methodology was studied in a quantitative structure-activity relationship (QSAR) context on a data set consisting of the binding affinities of 39 imidazobenzodiazepines for the α1 benzodiazepine receptor. The 3-D structures of these compounds were optimized using HyperChem software with semiempirical AM1 optimization method. After optimization a set of 1481 zero-to three-dimentional descriptors was calculated for each molecule in the data set. The response (dependent variable) in the tree model consisted of the binding affinities of drugs. Three descriptors (two topological and one 3D-Morse descriptors) were applied in the final tree structure to describe the binding affinities. The mean relative error percent for the data set is 3.20%, compared with a previous model with mean relative error percent of 6.63%. To evaluate the predictive power of CART cross validation method was also performed.

Keywords

References

  1. Hadjipavlou-Litina, D.; Garg, R.; Hansch, C. Chem. Rev. 2004, 104, 3751 https://doi.org/10.1021/cr0304469
  2. Verli, H.; Albuquerque, M. G.; de Alencastro, R. B.; Barreiro, E. J. Eur. J. Med. Chem. 2002, 37, 219 https://doi.org/10.1016/S0223-5234(02)01334-X
  3. Thakur, A.; Thakur, M.; Khadikar, P. Bioorgan. Med. Chem. 2003, 11, 5203 https://doi.org/10.1016/j.bmc.2003.08.014
  4. Savini, L.; Massarelli, P.; Nencini, C.; Pellerano, C.; Biggio, G.; Maciocco, A.; Tuligi, G.; Carrieri, A.; Cinone, N.; Carotti, A. Bioorgan. Med. Chem. 1998, 6, 389 https://doi.org/10.1016/S0968-0896(97)10039-6
  5. Terletskay, A.; Shvets, N.; Dimoglo, A.; Chumakov, Y. J. Mol. Struct. (Theochem) 1999, 463, 99 https://doi.org/10.1016/S0166-1280(98)00398-4
  6. Blair, T.; Webb, G. A. J. Med. Chem. 1977, 20, 1206 https://doi.org/10.1021/jm00219a019
  7. Greco, G.; Novellino, E.; Silipo, C.; Vittoria, A. Quant. Struct.-Act. Relat. 1992, 11, 461 https://doi.org/10.1002/qsar.2660110403
  8. Gupta, S. P.; Paleti, A. Quant. Struct.-Act. Relat. 1996, 15, 12 https://doi.org/10.1002/qsar.19960150104
  9. Huang, Q.; Liu, R.; Zhang, P.; He, X.; McKernan, R.; Gan, T.; Bennett, D. W.; Cook, J. M. J. Med. Chem. 1998, 41, 4130 https://doi.org/10.1021/jm980317y
  10. Put, R.; Perrin, C.; Questier, F.; Coomans, D.; Massart, L.; Vander Heyden, Y. J. Chrom. A 2003, 988, 261 https://doi.org/10.1016/S0021-9673(03)00004-9
  11. Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Classification and Regression Trees; Wadsworth: Monterey, 1984
  12. Lavrac, N. Artif. Intell. Med. 1999, 16, 3 https://doi.org/10.1016/S0933-3657(98)00062-1
  13. Marshall, R. J. J. Clin. Epidemiol. 2001, 54, 603 https://doi.org/10.1016/S0895-4356(00)00344-9
  14. De'Ath, G.; Fabricius, K. E. Ecology 2000, 81, 3178 https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
  15. Tittonell, P. A.; Shepherd, K.; Vanlauwe, B.; Giller, K. E. Agr. Ecosyst. Environ. 2008, 123, 137 https://doi.org/10.1016/j.agee.2007.05.005
  16. Questier, F.; Put, R.; Coomans, D.; Walczak, B.; Vander Heyden, Y. Chemometr. Intell. Lab. 2005, 76, 45 https://doi.org/10.1016/j.chemolab.2004.09.003
  17. Jalali-Heravi, M.; Shahbazikhah, P. Electrophoresis 2008, 29, 363 https://doi.org/10.1002/elps.200700136
  18. Massart, D. L.; Vandeginste, B. G. M.; Buydens, L. M. C.; De Jong, S.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier: Amsterdam, 1997
  19. Hypercube, http://www.hyper.com
  20. Todeschini, R. Milano Chemometrics and QSAR Group, http:// www.disat.unimib.it/vhm/
  21. Todeschini, R.; Consunni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, Germany, 2000

Cited by

  1. PREDICTION OF RETENTION OF PESTICIDES IN REVERSED-PHASE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY USING CLASSIFICATION AND REGRESSION TREE ANALYSIS AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS vol.35, pp.6, 2012, https://doi.org/10.1080/10826076.2011.613140
  2. Prediction of Infinite Dilution Activity Coefficients of Halogenated Hydrocarbons in Water Using Classification and Regression Tree Analysis and Adaptive Neuro-Fuzzy Inference Systems vol.42, pp.3, 2013, https://doi.org/10.1007/s10953-013-9972-2
  3. Bee Algorithm and Adaptive Neuro-Fuzzy Inference System as Tools for QSAR Study Toxicity of Substituted Benzenes to Tetrahymena pyriformis vol.92, pp.6, 2014, https://doi.org/10.1007/s00128-014-1253-2
  4. Prediction of solubility of some statin drugs in supercritical carbon dioxide using classification and regression tree analysis and adaptive neuro-fuzzy inference systems vol.65, pp.4, 2016, https://doi.org/10.1007/s11172-016-1424-x
  5. Shuffling cross–validation–bee algorithm as a new descriptor selection method for retention studies of pesticides in biopartitioning micellar chromatography vol.52, pp.5, 2017, https://doi.org/10.1080/03601234.2017.1283139