DOI QR코드

DOI QR Code

Structural and Molecular Orbital Properties of Some Boroxine Derivatives-A Theoretical Study

  • Turker, Lemi (Middle East Technical University, Department of Chemistry) ;
  • Gumus, Selcuk (Middle East Technical University, Department of Chemistry) ;
  • Atalar, Tane (Middle East Technical University, Department of Chemistry)
  • Published : 2009.10.20

Abstract

In the present study, firstly, the variations of the geometric parameters induced by different substituents on boroxine skeleton (symmetrically H, $CH_3$, Cl, F, $NO_2$ substituted boroxines) are investigated by using B3LYP/6-31G(d,p), RHF/6-31G(d,p), and MP2/6-31G(d,p) levels of the theory. The second objective is to estimate the substituent effect on the molecular aromaticity of boroxine derivatives using energetic and NICS criteria. Moreover, the effects of different theoretical levels on NICS values have been investigated in a systematic approach. Lastly, a rotational analysis has been performed to investigate the effect of rotation around the B-Me and B-$NO_2$ bonds on total energy of the system. It has been found that electron withdrawing substituents contribute the aromaticity of boroxine affirmatively. Conversely, electron donors make the system less aromatic. Also, the theoretical vibrational spectra for these boroxine derivatives are presented and compared with the experimental data from the literature.

Keywords

References

  1. Lazzeretti, P.; Tossell, J. A. J. Mol. Struct: (Theochem) 1991, 236, 403. https://doi.org/10.1016/0166-1280(91)80030-C
  2. Cooper D. L.; Wright, S. C.; Gerratt, J.; Hyams, P. A.; Raimondi, M. J. Chem. Soc. Perkin. Trans. 1989, 2, 719.
  3. Archibong, E. F.; Thakkar, A. J. Mol. Phys. 1994, 81, 557. https://doi.org/10.1080/00268979400100371
  4. Morgan, A. B.; Jurs, J. L.; Tour, J. M. Polym. Prepr. 1999, 40, 553.
  5. Mehta, M. A.; Fujinami, T. Chem. Lett. 1997, 915.
  6. Yang, Y.; Inoue, T.; Fujinami, T.; Mehta, M. A. J. Appl. Polym. Sci. 2002, 84, 17. https://doi.org/10.1002/app.10090
  7. Forsyth, M.; Sun J.; Zhou, F.; MacFarlane, D. R. Electrochima Acta 2003, 48, 2129 https://doi.org/10.1016/S0013-4686(03)00195-6
  8. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. https://doi.org/10.1021/cr00039a007
  9. Alcaraz, G.; Euzenat, L.; Mongin, O.; Katan, C.; Ledoux, I.; Zyss, J.; Blanchard-Desce, M.; Vaultier, M. Chem. Commun. 2003, 22, 2766
  10. Fielder, W. L.; Chamberlain, M. M.; Brown, C. A. J. Org. Chem. 1961, 26, 2154. https://doi.org/10.1021/jo01065a637
  11. Branch, G. E. K.; Yabroff, D. L. J. Am. Chem. Soc. 1932, 54, 2569. https://doi.org/10.1021/ja01345a516
  12. Mariategui, J. F.; Niedenzu, K. J. Organomet. Chem. 1989, 369, 137. https://doi.org/10.1016/0022-328X(89)88001-5
  13. Beckett, M. A.; Strickland, G. C.; Varma, K. S.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M. A. J. Organomet. Chem. 1997, 535, 33. https://doi.org/10.1016/S0022-328X(96)06952-5
  14. Ritchey, J. M. Synthesis and Properties of Addition Complexes of Boroxines and Other Selected Boron-Containing Systems, Ph.D. Thesis, University of Colorado, 1968.
  15. Snyder, H. R.; Konecky, M. S.; Lennarz, W. J. J. Am. Chem. Soc. 1958, 80, 3611 https://doi.org/10.1021/ja01547a033
  16. Das, M. K.; Mariategui, J. F.; Niedenzu, K. Inorg. Chem. 1987, 26, 3114. https://doi.org/10.1021/ic00266a011
  17. Wu, Q. G.; Wu, G.; Brancaleon, L.; Wang, S. Organometallics 1999, 18, 2553. https://doi.org/10.1021/om990053t
  18. Vargas, G.; Hernandez, I.; Hopfl, H.; Ochoa, M. E.; Castillo, D.; Farfan, N.; Santillan, R.; Gomez, E. Inorg. Chem. 2004, 43, 8490. https://doi.org/10.1021/ic048862e
  19. Matteson, D. S. J. Org. Chem. 1964, 29, 3399. https://doi.org/10.1021/jo01034a502
  20. Haiduc, I. The Chemistry of Inorganic Ring Systems, Part 1; Wiley: London, 1970.
  21. Beckmann, J.; Dakternieks, D.; Duthie, A.; Lim, A. E. K.; Tiekink, E. R. T. J. Organom. Chem. 2001, 633, 149.
  22. Doerksen, R. J.; Thakkar, A. J. Int. J. Quantum. Chem. 2002, 90, 534. https://doi.org/10.1002/qua.998
  23. Doerksen, R. J.; Thakkar, A. J. Phys. Chem. A 1999, 103, 10009. https://doi.org/10.1021/jp992524v
  24. Fowler, P. W.; Steiner, E. J. Phys. Chem. A 1997, 101, 1409. https://doi.org/10.1021/jp9637946
  25. Tossell, J. A. J. Phys. Chem. 1990, 94, 1723. https://doi.org/10.1021/j100368a004
  26. Beyer, H.; Hynes, J. B.; Jenne, H.; Niedenzu, K. Boron-Nitrogen Chemistry: Advances in Chemistry Series 42; American Chemical Society: Washington D. C., 1964.
  27. Parker, J. K.; Davis, S. R. J. Phys. Chem. A 1997, 101, 9410. https://doi.org/10.1021/jp971144b
  28. Brock, C. P.; Minton, R. P.; Niedenzu, K. Acta Cryst. C 1987, 43, 1775. https://doi.org/10.1107/S010827018709022X
  29. Beckett, M. A.; Brassington, D. S.; Owen, P.; Hursthouse, M. B.; Light, M. E.; Malik, K. M. A.; Varma, K. S. J. Organomet. Chem. 1999, 585, 7. https://doi.org/10.1016/S0022-328X(99)00182-5
  30. Haberecht, M. C.; Bolte, M.; Wagner, M.; Lerner, H. W. J. Chem. Cryst. 2005, 35, 657 https://doi.org/10.1007/s10870-005-3325-y
  31. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209. https://doi.org/10.1002/jcc.540100208
  32. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 221. https://doi.org/10.1002/jcc.540100209
  33. Leach, A. R. Molecular Modelling; Longman: Essex, 1997.
  34. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, 1133. https://doi.org/10.1103/PhysRev.140.A1133
  35. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: London, 1989.
  36. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  37. Vosko, S. H.; Vilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. https://doi.org/10.1139/p80-159
  38. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  39. Scuseria, G. E. J. Chem. Phys. 1992, 97, 7528. https://doi.org/10.1063/1.463977
  40. Sosa, C.; Lee, C. J. Chem. Phys. 1993, 98, 8004. https://doi.org/10.1063/1.464554
  41. Wilson, P. J.; Amos, R. D.; Handy, N. C. Phys. Chem. Chem. Phys. 2000, 2, 187. https://doi.org/10.1039/a907167i
  42. McKee, M. L. Structures and Mechanisms from Ashes to Enzymes, ACS Symposium Series; Eaton, G. R., Ed.; DC. Wiley, O Jardetzky, No. 827, American Chemical Society: Washington, DC, 2002; pp 135-149 (Chapter 8).
  43. Pulay, P.; Hinton, J. F.; Wolinski, K. Nuclear Magnetic Shieldings and Molecular Structure; Tossel, J. A., Ed.; NATO ASI Series C vol. 386, Kluwer: Netherlands, 1993; pp 243-262.
  44. Hehre, W. J.; Radom, L.; Schleyer, P. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
  45. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et. al., GAUSSIAN98, Revision A.9; Gaussian Inc.: Pittsburgh PA, 1998.
  46. Durant, P. J.; Durant, B. Int. to Adv. Inorganic Chemistry; Longman: London, 1970.
  47. Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects; Wiley: New York, 1994.
  48. Schleyer, P. R.; Jiao, H. Pure. Appl. Chem. 1996, 68, 209. https://doi.org/10.1351/pac199668020209
  49. Glukhovtsev, M. N. J. Chem. Educ. 1997, 74, 132. https://doi.org/10.1021/ed074p132
  50. Krygowski, T. M.; Cyranski, M. K.; Czarnocki, Z.; Hafelinger, G.; Katritzky, A. R. Tetrahedron 2000, 56, 1783. https://doi.org/10.1016/S0040-4020(99)00979-5
  51. Schleyer, P. R. Chem. Rev. 2001, 101, 1115. https://doi.org/10.1021/cr0103221
  52. Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. R. J. Org. Chem. 2002, 67, 1333. https://doi.org/10.1021/jo016255s
  53. Schleyer, P. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. E. J. Am. Chem. Soc. 1996, 118, 6317. https://doi.org/10.1021/ja960582d
  54. Jiao, H.; Schleyer, P. R. J. Phys. Org. Chem. 1998, 11, 655. https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U
  55. Schleyer, P. R.; Kiran, B.; Simion, D. V.; Sorensen, T. S. J. Am. Chem. Soc. 2000, 122, 510. https://doi.org/10.1021/ja9921423
  56. Quinonero, D.; Garau, C.; Frontera, A.; Ballaster, P.; Costa, A.; Deya, P. M. Chem. Eur. J. 2002, 8, 433. https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.0.CO;2-T
  57. Patchkovskii, S.; Thiel, W. J. Mol. Model. 2002, 6, 67. https://doi.org/10.1007/PL00010736
  58. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. R. Chem. Rev. 2005, 105, 3842. https://doi.org/10.1021/cr030088+
  59. Wason, S. K.; Porter, R. F. J. Phys. Chem. 1964, 68, 1443. https://doi.org/10.1021/j100788a029
  60. Jensen, J. O. Spectrochimica Acta Part A 2004, 60, 627. https://doi.org/10.1016/S1386-1425(03)00272-5
  61. Jensen, J. O. J. Mol. Struct. (Theochem) 2004, 676, 193. https://doi.org/10.1016/j.theochem.2004.01.028

Cited by

  1. Structural and Molecular Orbital Studies of Si-Phenyl Silaanthracenes vol.30, pp.2, 2010, https://doi.org/10.1080/10406631003712412
  2. N, HO, and F): A Computational Investigation vol.115, pp.26, 2011, https://doi.org/10.1021/jp202409m
  3. Beyond NICS: estimation of the magnetotropicity of inorganic unsaturated planar rings vol.13, pp.46, 2011, https://doi.org/10.1039/c1cp21952a
  4. Some novel molecular frameworks involving representative elements vol.14, pp.43, 2012, https://doi.org/10.1039/c2cp41424d
  5. Preparation, structural and thermal studies of boroxine adducts having aryl boronic acids and pyrazoles vol.10, pp.4, 2016, https://doi.org/10.5897/AJPAC2016.0687
  6. Flatbands in 2D boroxine-linked covalent organic frameworks vol.18, pp.2, 2016, https://doi.org/10.1039/C5CP05313G
  7. Dynamic Iminoboronate-Based Boroxine Chemistry for the Design of Ambient Humidity-Sensitive Self-Healing Polymers vol.23, pp.28, 2017, https://doi.org/10.1002/chem.201700333
  8. ChemInform Abstract: Structural and Molecular Orbital Properties of Some Boroxine Derivatives — A Theoretical Study vol.41, pp.4, 2010, https://doi.org/10.1002/chin.201004001
  9. The aromaticity of substituted diazanaphthalenes vol.963, pp.2, 2009, https://doi.org/10.1016/j.comptc.2010.10.026
  10. Heats of formation for the boronic acids R–B(OH)2 and boroxines R3B3O3 (R=H, Li, HBe, H2B, H3C, H2N, HO, F, and Cl) c vol.986, pp.None, 2009, https://doi.org/10.1016/j.comptc.2012.02.007
  11. A computational study on azaazulenes vol.19, pp.5, 2009, https://doi.org/10.1515/hc-2013-0100
  12. A computational study on azaazulenes vol.19, pp.5, 2009, https://doi.org/10.1515/hc-2013-0100
  13. Reorientational dynamics of trimethoxyboroxine: A molecular glass former studied by dielectric spectroscopy and 11B nuclear magnetic resonance vol.152, pp.3, 2009, https://doi.org/10.1063/1.5129769
  14. Effects of System Management on Value Creation and Global Growth in Born Startups: Focusing on Born Startups in Korea vol.6, pp.1, 2009, https://doi.org/10.3390/joitmc6010019