Synthetic Studies on Tedanolide: Stereoselective Synthesis of the C13-C21 Fragment

Su Ho Park, Jae Ki Min, Se Hwan Park, and Hyo Won Lee*
Deparment of Chemistry, Chungbuk Vational Chmersity, Cheongiu, Chungbuk 361-763, Korea
'E-mail: hwnleeQchungbuk ac kr
Received December 31, 2008, Accepted January 31, 2009

Key Words: Macrolide, Tedanolide. Antitumor compounds, Metal-mediated allylation

The highly cytotoxic macrolide tedanolide (1) was isolated by Schmitz and co-workers from the Caribbean sponge Tedanis ignis in 1984. ${ }^{1}$ This antitumor macrolide features four labile aldol units. a side chain containing a hydroxy epoxide ring. an 18-membered lactone. and the crowded contiguous chiral centers at C16-C19. It also shows in vitro cytotoxicity against KB and PS cell lines ($\mathrm{ED}_{50}{ }^{\circ} \mathrm{s}: 250 \mathrm{pg} / \mathrm{mL}$ and 16 $\mathrm{pg} / \mathrm{mL}$. respectively) and in wo antitumor activity. increasing the lifespan of mice implanted with lymphocytic leukemia cells (23% at $1.56 \mu \mathrm{~g} / \mathrm{kg}$). Because of their unusual stnictural features and powerful biological activities. 1 and 2 have attracted considerable attention of synthetic chemists. Recently Kalesse ${ }^{2 a b}$ and Smith ${ }^{2+4}$ have reported successful total synthesis of tedanolide (1). respectively. We have reported our synthetic studies on tedanolide (1). ${ }^{3}$ As part of our synthetic studies toward 1, we now report a concise and stereoselective synthesis of the C13-C21 fragment 3 .

Our retrosynthetic analysis of tedanolide (1) is outlined in Scheme 1. Disconnections at the lactonic C-O bond and a bond between Cl 2 and Cl 3 produce subunits of aldehyde 3 and ketone 4 . The C13-C21 aldehyde 3 can be prepared by the Roush asy mmetric crotylation from aldehyde 5 . Our present synthesis focuses on the preparation of 5 . For the key stereoselective $\mathrm{C}-\mathrm{C}$ bond formation of $\mathbf{5}$, we relied on a

Scheme 1. Retrosynthetic analysis

Scheme 2. a) $\mathrm{Ph}_{3} \mathrm{PCCH}_{3} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{CH}, \mathrm{Cl}, \mathrm{rt}, 24 \mathrm{~h}, 85 \%$ b) DIBAL-H, $\left.\mathrm{THF},-78^{\circ} \mathrm{C}, \mathrm{Ih}, 96 \% ; \mathrm{c}\right)\left(\mathrm{COCl} h_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}\right.$ to 0 ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 92 \%$.
metal-mediated allylation reaction between aldehyde 6 and allylic bromide 7 with the control of $\mathrm{C} 16-\mathrm{Cl} 7$ stereogenic centers. The aldehyde 6 was synthesized from (S)-methyl 3-hydroxy-2-methylpropionate as reported in the literature. ${ }^{+}$

Our synthesis commenced with the preparation of aldehyde 6. For the synthesis of aldehyde 6 (Scheme 2), aldehyde 9 . readily available from (S)-methyl 3-hydroxy-2-methylpropionate (8) in three steps. was subjected to the Wittig reaction to furnish $\alpha . \beta$-unsaturated ester $10(E Z=95: 5)$. And then 10 was reduced regioselectively with DBAL-H to give allylic alcohol 11 in good yield. The Swern oxidation ${ }^{5}$ of 11 completed the synthesis of the desired aldehyde 6 in 75% overall yield from 9 in three steps.

With aldehyde 6 in hand, we carried out metal-catalyzed allylation reaction. ${ }^{6}$ Several kinds of metals have been employed as mediators for the allylations of aldehyde 6 with allylic bromide 7 (Scheme 3). Among these. indium and zinc are widely utilized. The use of indium metal as a mediator under the Barbier-type conditions was first reported in $1988{ }^{\text {6 }}{ }^{6}$ Compared to other metals. indium offers a number of advantages, including its low toxicity. tolerance toward air and moisture and. due to its low ionization potential. a high reactivity in the absence of external activators and proton sources. Zinc was also employed in the Barbier-type allylations and it has been likewise proved to be a lighly useful mediator for the allylation of various substrates. ${ }^{66}$ In contrast to indium-mediated allylations. which are commonly carried out in THF/water mixtures without additives. the use of zinc generally requires the presence of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ as a proton source together with the organic solvent.

Indium or zinc mediated coupling of aldehyde 6 and allylic

Scheme 3. a) TBAF, THF, rt, 1h, 96% : b) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2,} 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$.

Scheme 4. a) TBAF, THF, rt, $1 \mathrm{~h}, 96 \%$; b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 80 \%$, c) OsO_{4}, NMO, acetone, rt, $3 \mathrm{hh}, 75 \%$: d) NaIO_{4}, $\mathrm{THF}: \mathrm{H}_{2} \mathrm{O}=4: 1, \mathrm{rt}, 1 \mathrm{~h}$, e) 16, 4 A MS, toluene, $\left.-78^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%: \mathrm{t}\right) \mathrm{OsO}+\mathrm{NMO}$, acetone, rt, $4 \mathrm{~h}, 88 \%$: 9) $\mathrm{NaIO}, \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}=4: 1, \mathrm{rt}, 3 \mathrm{~h} ; \mathrm{NaBH}$, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 87 \%$; h) 19, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 83 \%$; i) DIBAL-H, THF, $78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 71 \% ;$ j) $\mathrm{DMP}_{,} \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2,},{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$.
bromide 7 produced a $\sim 2: 1$ mixture of diastereomeric alcohols at Cl 7 (Scheme 3). Although no excellent selectivity was observed the two diastereomers could be easily separated by flash columu chromatography. In order to determine the relative stereochemistry of the major product 12a the removal of a TBDPS silyl group of 12a with TBAF furnished the diol 13. The 1,3 -diol $\mathbf{1 3}$ was then converted into acetonide $\mathbf{1 t}$. The configurations at C16 and C17 were confirmed by the Mosher's method and NOE analysis of acetonide 14 . respectively.
The next step along the sequence was the introduction of a C13-C15 homoallylic alcohol unit using the Roush asymmetric crotylation ${ }^{8}$ (Scheme 4). Deprotection of TBDPS silyl ether 12a with TBAF furnished the intermediate 1.3 -diol. The next step was the protection of two hydroxy groups as TBS silyl ethers. The treatment of the intermediate diol with TBSOTf in the presence of 2,6 -lutidine provided compound $\mathbf{1 5}$. The terminal vinyl group in 15 was converted into the corresponding aldehyde 5 by initial osmium-mediated dilyydrosylation followed by oxidative cleavage with NaIO_{4}. The subsequent Roush asy mmetric allylation reaction upon aldehỵde 5 gave predominantly the desired homoallylic alcohol 17 (95:5 dr by ${ }^{\prime} \mathrm{H}$ NMR analysis) with the requisite stereochemistry' at CI 4 and C15 of tedanolide (1) as we expected. Homoally lic alcohol 17 was treated with $\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$ followed by reduction to afford the diol 18 in ligh y ield. The I.3-diol 18 was protected as + -methoxybenzy lidene (MPM) acetal 20, which was then reduced regioselectively with DIBAL-H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give primary alcohol 21 in good yield. Finally the Dess-Martin oxidation ${ }^{9}$ of 21 completed the synthesis of the desired aldehyde 3.

In conclusion, the C13-C21 segment 3 of tedanolide (1)
was obtained in 20% yield over 14 steps from the aldehyde 9 . The key steps were metal-mediated allylation and the Roush asymmetric crotylation. Ongoing efforts toward the completion of tedanolide (1) are currently in progress and will be reported in due course.

Acknowledgments. The financial support from the Korea Science and Engineering Foundation (Grant-in-aid: R01-2005-000-10032-0) was greatly appreciated.

References

1. Schmitz, F. J.; Gunasekera, S. P.; Yalamanchili, G.; Hossain, M. B.; Vann der Helm, D. J. An. Chem. Soc. 1984, 106, 7251-7252.
2. (a) Elrlich, G.: Hassfeld, I.; Eggert, U.; Kalesse, M. J. Am. Chem. Soc. 2006, 128, 14038-14039. (b) Ehrlich, G.; Hassfeld, T.; Eggert, U.; Kalesse, M. Chem. Eur J. 2008, 1f, 2232-2247. (c) Smith, A. B.: Lee, D. J. Am. Chem. Soc. 2007, 129, 10957-10962.
3. Park, S. H.; Lee, H. W. Bufl. Korean Chem. Soc. 2008, 29, 1447-1448.
4. Walkup, R. D.; Kane, R. R.; Boatman, P. D., JI; Cunningham, R. T. Tetrahed dron Lett. 1990, 52, 7587-7590.
5. Mancuso, A. J.; Swem, D. Sinthesis 1981, 165-185.
6. (a) Araki, S.; Ito, H.; Butsugan, Y. J. Org. Chem. 1988, 53, 1831-1833. (b) Killinger, T. A.: Boughton, N. A.: Runge, T. A.; Wolinsky, I. J. Organomet. Chem. 1977, 124, 131-134. (c) Park, S. H.: Yoon, H. K.: Lee, H. W. Buhl. Korean Chem. Soc. 2006, 27, 1519-1520. (d) Lee, P. H. Bull. Korem Chem. Soc. 2007, 28, 17-28.
7. Dale, T. A.; Mosher, H. S. J.Am. Chem. Soc. 1973, 95, 512-519.
8. Roush, W. R.; Adam, M. A.: Walts, A. E.: Harris, D. J. J. Am. Chem. Soc. 1986, 108, 3422-3434.
9. Dess, D. B.; Martin, T. C. J. Org. Chem. 1983, 48, 4155-4156.
