A Unique Three-dimensional MOF with 8-connected bcu Topology out of Customary Building Blocks

Hy ungphil Chun* and Narac Jin
Department of 1pphied Chemisty, College of Science and Techoology, Ilanvang Iniversity, Insan t26-791, Korea
${ }^{*}$ E-mail: hchurahanwang ac k -
Received 1pril 24, 2009, Accepted Ipril 27, 2009

Key Words: MOF, Co(II), Pyrimidinecarboxylate, Crystal structure, beu Topology

A secondary huilding unit (SBL)-based approach is an effective strategy for introducing design concepts in the synthesis of new metal-organic frameworks (MOF's). 'When multinuclear SBUs are linked by linear building blocks. for example, the topology of resulting networks are likely to be predictable based on our experience and the library of basic nets for given connectivities. ${ }^{2}$

A case that is less certain and less predictable includes when organic building blocks are pluripotent in terms of their connectivities in network structures. We refer one such example to a ligand little known in MOFs, 5-pyrmidinecarboxylate (pme). With two aromatic nitrogen atoms and one carboxylate group, pme is a potential tritopic linker, although only one of the two nitrogen atoms may possess sulficient basicily to bind transition metal ions. Under this situation, a question arises whether pme (I in Scheme 1) would behave in the same way as 3-pyridincearboxylate (pyc, Il in scheme l) does in forming extended networks.

This report is a case study for this mater, and a part of our recent efforts to use angular organic building blocks for the synthesis of new porous MOFs. ${ }^{3}$

Solvothermal reactions of $1 \mathrm{I}(\mathrm{pmc})$ and $\mathrm{Co}\left(\mathrm{NO}_{3}\right)=6 \mathrm{H}_{2} \mathrm{O}$ in DMF produce small rhomboidal erystals whose composition is $\left|\mathrm{Co}_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{pmc})_{4}\right|(\mathrm{DMF})$ (1) according to X-ray crystallography. The elemental analysis and X-ray powder diffraction (XRPD) studies independently eonlim the homogeneity and purity of the bulk product (Figure 1).

A thermal analysis shows a clear plateau to about $250^{\circ} \mathrm{C}$ in air before a multi-step weight loss due to the removal of guest DMT and decomposition ot the framework oceurs (Figure 1). The thermal stability of $\mathbf{1}$ is further evidenced by XRPD measured atter heating the as-synthesized material at $120^{\circ} \mathrm{C}$ ' for 12 h and then at $180^{\circ} \mathrm{C}$ for additional 12 h under vacuum (Figure 1).

The structure of 1 is based on a dinuclear SBU in which wo

(I)

(II)

(III)

(IV)

Scheme 1. The binding modes of pme (I) and pye (II) ligands and the SBU (III). The double-bridging mode of pye ligand (IV).
Co^{2} ions are bridged by a $\mu-\mathrm{OH}_{2}$ ligand and two carboxylate groups (Figure 2a) ${ }^{+}$

Fach Co'응 is further bonded by one carboxy late oxygen and two nitrogen atoms, closing out the octahedral coordination sphere The oxygen atoms of the terminal carbonylate groups are hydrogen-bonded to the bridging aqua ligand. Overall, the Coz unit is supported by 8 pme ligands which act as simple angular linkers as I in scheme I

The Cambridge Structural Database (CSD) ${ }^{5}$ lists 68 crystal structures having the dimetal unit shown as III in Scheme l, and four of them are polymeric materials. Of these, wo MOFS, $\left|\mathrm{M}_{2}\left(\mu-\mathrm{OH} \mathrm{I}_{2}\right)(\mathrm{p} y \mathrm{C})_{+}\right|\left(\mathrm{M}=\mathrm{Co}^{2-}, \mathrm{Ni}^{--}\right)$, ${ }^{6}$ are based on the combination of II and III, and thus are pertinent to $\mathbf{1}$ that is build from I and III. Unlike 1, however, those (wo MOFs are 4and 5 -comected nets despite the SBUs are supported by 8 ligands in almost the same confomation as that of the title MOF. We find that the reduced connectivities are due to the angular ligands doubly bridging between adjaeent metal ions (IV in Scheme 1). Such redundant linkages are avoided in 1 because the additional nitrogen donor on pme compared to pye ligands provides an altemate way of exiending the network with, probably, less strain on the linkers, and therefore all of the 8 ligands in the SBU acts as independent linkers. This analysis simplifies the network structure of $\mathbf{1}$ to a uninodal

Figure 1. (Lett) Simulated (a) and experimental (b) X-ray powder diffraction pattems of 1 . Shown in (c) was measured after heating 1 at $120^{\circ} \mathrm{C}$ tor 12 h and then at $180^{\circ} \mathrm{C}$ for 12 h under vacumm. (Right) TGA profile of as-synthesized 1 measured in the air with the heating rate of 5 "Cimin.

Figure 2. The dinuclear $\mathrm{SBl} \|$ (a) and expanded view of 1 showing the isolated cages (b). (c) The topological model of the SBT as a cubic node. (d) The network structure of 1 stiveal according to (c).

8 -connected net and the vertex figure to a cube (Figure 2b). The combination of cubic nodes in a uninodal 8-connected net can only be seen in the body-centened cubic lattice (bcu). ${ }^{\text {.c }}$ and that is indeed the topology underlying the net of 1 (Figure 2c. 2d). Note that uninodal 8 -connected nets are not common in MOFs. and the beu net is especially so. ${ }^{\text {. }}$

In view of 1 as a porous MOF. straight open channels are expected from the simplified presentation shown in Figure 2d. In fact, the channels are formed by a successive array of edgesharing octaliedral cages. In the actual structure of $\mathbf{1 .}$ however. each cage surrounded by 6 SBUs is isolated from its neighbors by the angular ditopic linkers. A guest DMF which is disordered over two positions is found inside the cage. and therefore the solvent molecule is occluded. ${ }^{\text {. }}$ Consequently. removing this guest molecule requires a compreliensive disnuption of the links and leads to a decomposition of the framework as shown by the thermal gravimetric analysis. The presence of oceluded solvents. on the other hand, suggests that templated synthesis may be a good strategy for oblaining a new MOF from Co^{-1} and pme ligand.
In brief. pme is a building block that provides a simple angular linkage similar to pye ligand. The presence of extra donor atom. however. allows additional degree of freedom in the way SBUs are connected. The unique role of punc ligand in the phase determination of MOFs necessitates more thorough and systematic investigations towards new porous MOFs.

Experimental Section

$\mathrm{H}($ pmc $)(0.240 \mathrm{~g} .1 .9 \mathrm{mmol})$ and $\mathrm{Co}\left(\mathrm{NO}_{3}\right)-6 \mathrm{H}_{2} \mathrm{O}(0.282 \mathrm{~g}$.
0.97 mmol) were dissolyed in DMF (31.0 mL) and stirred for 2 hours. The pink solution was divided into 2 portions and heated in a scaled vial $10110^{\circ} \mathrm{C}$ for 48 hours. The product was collected, washed with DMF and CHCl_{3}. and dried under vacum ($0.235 \mathrm{~g} .69 \%$). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{9} \mathrm{O}_{10} \mathrm{CO}_{2}: \mathrm{C}$. 39.37: H. 3.02: N. 17.98%. Found: C. 39.07. H. 3.04. N. 17.81% Crstal data for $1: \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{Co}_{2}, f 1 \mathrm{fr}=701.35$, tetragonal $P+_{3} 2, Z=4, T=173 \mathrm{~K} . \lambda\left(\right.$ Mo K $\left._{4}\right)=0.71073 \AA, a=$ $11.08+(1) . c=22.482(3)$ A. $I^{\prime}=2762.1(5) \mathrm{A}^{3} . \rho_{\text {calcul }}=1.687$ $\mathrm{g} / \mathrm{cm}^{3} . \mu\left(\mathrm{Mo} \mathrm{K}_{\mathrm{s}}\right)=1.27+\mathrm{mmn}^{-1} . \mathrm{F}(000)=1+2+$. Siemens SMART CCD diffractometer. 16911 reflections measured. 3378 independent $\left(R_{p t}=0.0266\right)$. Final $R_{2}=0.0332, w_{2}=0.0715$ for all data. (iO) on $^{-}=1,09+$. Flack $x=0.010(15)$. The crystallographic data (CIF) for $\mathbf{1}$ has been deposited at the Cambridge Crystallographic Data Centre. CCDC No. 729188. Copies of the data can be obtained free of charge on application to CCDC, 12 Union road. Cambridge CB2 IEZ. UK (fax: +441223336033 : c-mail: depositícocdc camac.uk) or eloct ronically via www.ccdc. cam.ac.uk/data_request/cif.

Acknow ledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2006-331-C00157).

References

1. (a) Yaghi, O. M.: OKeette, M.: Ockwig, N. W.: Chae, H. K.: F.ddaoudi, M.: Kim, J. Mature 2003, 423, 705 (b) ${ }^{\circ}$ Keeffe, M.: Eddaoudi. M.: Li, H.; Reineke, T.: Yaghi. O. M. J. Solid State (hem. 2000, 152, 3 .
2. (a) O Kuelie, M.: Peshov, M. A.: Ramsden. S. I.: Yaghi. O. M. Acc. (hem Res. 2008, H1. 1782 (b) Friedrichs O. D:- O'Keetfe, M.: Yaghi, O. M. Acta (rystallog., Sect. A: Fomnd. (ipstallogr: 2003, 59, 515 . (c) liriedrichs, O. D.: O Keefie, M.: Yaghi, O. M. ibid, p 22.
3. (a) Chum, H.: lung, II.: Seo, I. haong. Chem. 2009, 4R, 2043. (b) Chun, H.: Jung, H. hoog. (hem 2009, 48, 417. (c) Chun, H. I. Am. (hem. Soc: 2008, $130,800$.
4. All the hydrogen atoms including those of the aqua ligand were located from dilference Fourier maps and their positional parameters were refined, ruling out the possibility of alternate description of a μ-($)^{2-}$ bridge and two H (pme) ligands.
5. 2009 Release (V5.30)
6. (a) Wasson, A. E.. Labuca, R. L. Polhnedron, 2007, 26, 1001. (b) Liu. Y.-HI.: Tsai, II.-L.: Lu, Y.-L.: Wen, Y.-S.: Wang, J.-C..: Lu, K.-L Inorg Chem. 2001, 10. 6426.
7. (a) Chun, II.: Jung, II.: Koo, G.: Jeong, II:: Kim, D)-K. Inorg. Chem. 2008, $+7,5355$. (b) Hill, R. I.: Long, D.-L.: Champness, N. R.: Ilubberstey, P: Schroder, M. Ice. Chom. Res 2005, 38, 3.37 and references cited therein.
8. (a) T.lı, T-T.: Tsai, H.-T : Yang, S.-J.: T inl, Y-H: Yadav, D.: Su,
 2005. 4, 6063 . (b) Fckhardt. R.: Hanika-Heidl. H:: Fischer. R. D. Chem. Firr J. 2003, 9, 1795 (c) Long, D.-I_: Blake, A. J.: Champness, N. R.: Wilson, C.: Schroder, M. Angew (hem. Int. Ed. 2001, 10, 2443. (d) Lu, J: Harrison, T. A. Tacobson, A. J. Angew Chem. Int. Ed. 1995 34, 2557.
9. The presence of a positionally disorderal DMF molecule implies that the solvent cage can accommodate slightly larger molecules, such as DMA or DLEI. Inded, 1 can also be synthesized using DMA or DEF instead of DMF.
