Studies on the Total Synthesis of Amphidinolide O (IV): A Stereoselective Synthesis of C1-C11 Fragment

Hyun-Woo Joo, Hye-Jin Jung, Min-ho Hwang, and Duck-Hyung Lee*
Department of Chemistry, Sogang Unversit;, Seoul 121-742. Korea. E-mail: dhleeosogang.ac kr Received June 12, 2009, Accepted September 5, 2009

Key Words: Amphidinolide O. Anti-cancer activity. Asymmetric allylation, sw-Aldol reaction

The amphidinolides are well-known series of cytotoxic macrolides isolated from the marine dinoflagellate. Amphidinium $s p$. which is a symbiotic with Okinawan marine flatworm Amphiscolops sp.. and attracted interests from the synthetic community due to their potent cytotoxic activities against various cancer cell lines. ${ }^{1}$

The isolation and structural elucidation with the relative stereochemistry of amphidinolide O (1) were reported by Kobayshi et al. in 1995 (Figure 1). ${ }^{2}$ Amphidinolide O (1) is a 15 -membered macrolide possessing seven chiral centers. one tetrahydropyran ring with one exo-methylene group. three equatorial alkyl substituents. and one axial hydronyl group. one epoxide, and three double bonds. In addition, amphidinolide $\mathrm{O}(1)$ showed in vitro cytotoxicity against L1210 cells (IC50: $1.7 \mu \mathrm{~g} / \mathrm{mL}$) and human epidermoid carcinoma KB cells (IC50: $3.6 \mu \mathrm{~g} / \mathrm{mL}$). and total synthesis of amphidinolide O (1) has not been reported yet

In relation to our program for the synthesis of amphidinolide O (1), we published the stereoselective synthesis of

Figure 1. Retrosynthesis of Amphidinolide $O(1)$.
$\mathrm{C} 12-\mathrm{C} 17 . \mathrm{C} 3-\mathrm{Cl1}$. and $\mathrm{Cl}-\mathrm{Cl1}$ fragments of amphidinolide O (1) in the past few years. ${ }^{3}$ We report herein a more efficient route along with the formation of the tetrahydropyran ring in the synthesis of $\mathrm{Cl}-\mathrm{Cl} 1$ fragment 3 using Brown asy mmetric allylation ${ }^{+}$and Evans $s p h$-aldol reaction.

In a retrosy nthetic analysis (Figure 1). amphidinolide $\mathrm{O}(\mathbf{1})$ can be derived from the common intermediate 2 . Intermediate 2 may be prepared from $\mathrm{Cl}-\mathrm{Cll}$ segment 3 and $\mathrm{Cl} 2-\mathrm{Cl} 7$ segment + by Yamaguchi esterification ${ }^{6}$ and ring-closing metathesis (RCM). Construction of the correct stereochemistry at C-4 and C-5 would be established from the Evans $s y$-aldol reaction of 5 and $6{ }^{5}$

The internediate $\mathbf{1 1}$ was prepared from the conmercially available 1.3 -propanediol (7) (Scheme 1). After mono-protection of the diol 7 using sodium hydride. PMBCl and TBAI in THF in 70% yield. the primary hydroxyl group was converted quantitatively to the aldehyde by Swern oxidation. and the subsequent olefination using stabilized Wittig reagent in benzene provided the trans- α - β-unsaturated ester $\mathbf{8}$ in 91% overall yield. ${ }^{3.8}$ The ester moiety in 8 was reduced to a primary alcohol by Dibal-H in 94% yield. Swern oxidation of the resulting alcohol was followed by asymmetric Brown allylation protocol using (-)-B-methoxydiisopinocampheyl-

Scheme 1. Synthesis of intermediate 11. (a) $\mathrm{NaH}, \mathrm{PMBCl}, \mathrm{TBAI}$, THF, rt, $24 \mathrm{~h}(70 \%)$. (b) (i) $\mathrm{DMSO},\left(\mathrm{COCl}\right.$ h, $\mathrm{TEA}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, (ii) $\mathrm{Ph} \mathrm{P}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, $45^{\circ} \mathrm{C}(91 \%$, wo steps) (c) Dibal- H , $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ (94%). (d) (i) DMSO, (COCl) 2 , TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, (ii) (-)-Ipc_BOMe, allyl-magnesium bromide, ether, $-90{ }^{\circ} \mathrm{C}$ (ent ratio $=8: 1,98 \%$, two steps). (e) TESCl , imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}(87 \%)$. (f) $\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}=3: 1,-5^{\circ} \mathrm{C}(68 \%)$. (g) (i) $\mathrm{Pb}(\mathrm{OAc})_{4}$, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, (ii) $\mathrm{TiCl}_{4},(-)$ sparteine, $6, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}(83 \%$, two steps).

Scheme 2. Synthesis of $\mathrm{Cl}-\mathrm{Cll}$ Fragment 3. (a) MeONHMe- HCl , AlMe $3_{,}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}(68 \%)$. (b) TBSOTf, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ (96%). (c) Dibal- $\mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ (96%). (d) BuLi, disopropylamine, Ethyl acetate, THF, $-78{ }^{\circ} \mathrm{C}\left(92 \%\right.$). (e) $\mathrm{DMP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ (81%). (f) p-TsOH, MeOH: $\mathrm{MC}=2: 8, \mathrm{rt}, 16 \mathrm{~h}(65 \%)$. (g) TBSOTf, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}(99 \%)$) (h) LiOH , THF: $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}=$ 1:1:1, rt (53%)

Figure 2. Assignment of the Relative Stereochemistry of 14
borane ${ }^{4}$ at $-90^{\circ} \mathrm{C}$ to provide the homoallylic alcohol 9 in a $8: 1$ enantiomeric ratio ${ }^{9}$ and in 98% two step yield. The secondary hydroxyl group was converted to TES ether 10 in 87% yield. and the double bond was dihydroxylated using OsO_{4} and NMO in 68% yield. Dilydroxylation at $-5^{\circ} \mathrm{C}$ was necessary in order to suppress the concomitant formation of the tetraol. Oxidative cleavage of the diol afforded the aldehyde and the aldehyde was immediately treated with titanium enolate of (R)-4-benzyl-3-propyloxazolidin-2-one (6) to give the sm-aldol product 11 in 83% two step yield. ${ }^{*}$

Next. oxazolidinone 11 was transformed to a Weinreb amide by reaction with trimethy laluminium and A, O-dimethylhydroxylamine hydrochloride in 68% yield (Scheme 2). ${ }^{3}$ After protection of the resulting secondary alcohol to the corresponding tert-butyldimethylsilyl ether in 96% yield. the Weinreb amide was treated with Dibal- $\mathrm{H}_{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the aldehyde $\mathbf{1 2}$ in 96% yield. Condensation of $\mathbf{1 2}$ with the enolate of ethyl acetate (92% y ield) and the subsequent DessMartin oxidation of the resulting secondary alcohol gave the β ketoester 13 in 81% yield. Removal of the TES protecting
group in 13 using $p-T s O H$ in methanol-dichloromethane led to the simultaneous cyclization into the tetralydropyran acetal 14 and cleavage of TBS-protection group in 65% yield. Protection of the secondary hydrosyl group by TBSOTf and TEA in 99% yield. and final hydrolysis of ester moiety in $\mathbf{1 4}$ with lithum hydroxide gave the $\mathrm{C} 1-\mathrm{C} 11$ fragment 3 . ${ }^{\text {If }}$

The relative stereochemistry of tetrahydropyran $\mathbf{1 4}$ was further confirmed by ${ }^{1} \mathrm{H}$ NOE study (Figure 2).

In summary, the $\mathrm{Cl}-\mathrm{Cll}$ fragment $\mathbf{3}$ (18 steps. 4% overall yield from 8) of amphidinolide O (1) has been synthesized through Brown asymmetric allylation and Evans sw-aldol reaction as key steps.

Acknowledgments. This research was assisted financially by Korea Research Foundation (KRF-2006-311-C00381). The instrument facilities of the Organic Chemistry Research Center (OCRC) in Sogang University were also helpful.

References

1. Kobayashi, J.: Tsuda, M. Nat. Prod. Rep. 2004, 21, 77-93.
2. (a) Ishibashi, M.; Takahashi, M.: Kobayashi, I. J. Org. Chem. 1995, 60, 6062-6066. (b) Ishibashi, M.; Kobayashi, T. Heterocyctes 1997, 44, 543-572.
3. (a) Pang, J. H.; Lee, D. H. Bull. Kor: Chem. Soc: 2002, 23, 1173-1176. (b) Pang, J. H.; Ham, Y. T., Lee, D. H. Bull. Kor: Chem. Soc. 2003, 24, $891-892$. (c) Jang, M. Y.: Kim, T. W.; Lee, D. H. Bull. Kor. Chem. Soc. 2005, 26, 1497-1498. (d) Kim, J. W.; Kong, S. J.; Kim, Y. J;; Lee, D. H. Buhl. Kor. Chem. Soc: 2008, 29, 297-298.
4. (a) Brown, H. C.; Tadhav, P. K.; Perumal, P. T. Tetrohedron Lett. 1984, 25, 5111 -5114. (b) Racherla, U. S:; Brown, H. C. J. Org. Chem. 1991, 56, 401-404, (c) Brown, H. C.; Ramachandran, P. V. Pure Appl. Chem. 1991, 63, 307-316.

5 (a) Evans, D. A.: Sjogren, E. B.; Weber, A. E.: Com, R. E. Tetrahedron Letr. 1987, 28, 39-42. (b) Evans, D. A.; Carter, P. H.; Carreira, E. M.; Charette, A. B.; Prunet, T. A.; Lautens, M. J. Am. Chem. Soc. 1999, 121, 7540-7552.
6. Inanaga, T.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993.
7. (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 441,3-4450.
(b) Fürstner, A. Angew. Chem. Int. Ed. 2000, 39, 3012-3043.
8. Stabilized Wittig reagent tumed out to be better than HWE reagents in the synthesis of trans- α, β-unsaturated ester
9. The enantiomeric ratio was determined by using Mosher's ester method (Mosher Ohtani, I.: Takenori, K.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096).
10. Spectroscopic data for $3: \mathrm{R}_{f} 0.66$ (EA/hes $=1: 2 ;[\alpha]_{D}^{25}=1.07$ ($\mathrm{c}=0.43, \mathrm{CHCl}_{3}$) ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{dt}, J=15.5 \& 6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.54(\mathrm{dd}, J=15.5 \& 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}) .4 .12(\mathrm{~m}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dt}, J=4.5 \& 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{Ht}, 2.37(\mathrm{dt}, J=6.5 \& 6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{dm}, 1 \mathrm{H})$, $1.63(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9$ H), 0.03 (s, 6 H) ppm, ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): 8170.20, $159.36,130.56,130.50,129.45,113.96,101.92,72.75,70.72$, $69.32,69.10,55.44,48.43,45.54,41.19,40.58,32.79,25.91$, $18.09,12.07,-3.95,-4.59 \mathrm{ppms}$: HRMS: $m / 2$ calcd for $\mathrm{C}_{2}: \mathrm{H}_{4} \mathrm{NaO}-\mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{-} 531.2754$, found 531.2755 .

