DOI QR코드

DOI QR Code

Synthesis of Tellurium Sorption Complexes in Fully Dehydrated and Fully Ca2+-exchanged Zeolites A and X and their Single-crystal Structures

  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University) ;
  • Park, Jong-Sam (Department of Radiologic Technology, Daegu Health College) ;
  • Lee, Sang-Hoon (Department of Applied Chemistry, Kyungpook National University) ;
  • Jung, Ki-Jin (Department of Applied Chemistry, Kyungpook National University) ;
  • Heo, Nam-Ho (Department of Applied Chemistry, Kyungpook National University)
  • Published : 2009.06.20

Abstract

Single crystals of fully dehydrated and fully $Ca^{2+}$-exchanged zeolites A (|$Ca_6$|[$Si_{12}Al_{12}O_{48}$]-LTA) and X (|$Ca_{46}$| [$Si_{100}Al_{92}O_{384}$]-FAU) were brought into contact with Te in fine pyrex capillaries at 623 K and 673 K, respectively, for 5 days. Crystal structures of Te-sorbed $Ca^{2+}$-exchanged zeolites A and X have been determined by single-crystal X-ray diffraction techniques at 294 K in the cubic space group Pm$\overline{3}$ m (a = 12.288(2) $\AA$) and Fd $\overline{3}$ (a = 25.012(1) $\AA$), respectively. The crystal structures of pale red-brown |$Ca_6Te_3$|[$Si_{12}Al_{12}O_{48}$]-LTA and black coloured |$Ca_{46}Te_8$| [$Si_{100}Al_{92}O_{384}$]-FAU have been refined to the final error indices of $R_1/wR_2\;=\;0.1096/0.2768\;and\;R_1/wR_2$ = 0.1054/ 0.2979 with 204 and 282 reflections for which $F_o\;>\;4{\sigma}(F_o)$, respectively. In the structure of |Ca6Te3|[$Si_{12}Al_{12}O_{48}$]- LTA, 6 $Ca^{2+}$ ions per unit cell were found at one crystallographic positions, on 3-fold axes equipoints of opposite 6-rings. In |$Ca_{46}Te_8$|[$Si_{100}Al_{92}O_{384}$]-FAU, 46 $Ca^{2+}$ ions per unit cell were found at four crystallographically distinct positions: 3 $Ca^{2+}$ ions at Ca(1) fill the 16 equivalent positions of site I, 21 $Ca^{2+}$ ions at Ca(2) fill the 32 equivalent positions of site I’, 10 and 12 $Ca^{2+}$ ions at Ca(3) and Ca(4), respectively, fill the 32 equivalent positions of site II. The Te clusters are stabilized by interaction with cations and framework oxygen. In sodalite units, Te-Te distances of 2.86(10) and 2.69(4) $\AA$ in zeolites A and X, respectively exhibited strong covalent properties due to their interaction with $Ca^{2+}$ ions. On the other hand, in large cavity and supercage, those of 2.99(3) and 2.76(11) $\AA$ in zeolites A and X, respectively, showed ionic properties because alternative ionic interaction was formed through framework oxygen at one end and $Ca^{2+}$ cations at the other end.

Keywords

References

  1. Almand, P.; Saboungi, M. L. Physical Review Letters 1997, 79, 2061-2064 https://doi.org/10.1103/PhysRevLett.79.2061
  2. Wang, Y.; Herron, N. J. Phys. Chem. 1987, 91, 257-260. https://doi.org/10.1021/j100286a004
  3. Parise, J. B.; MacDougall, J. E.; Herron, N.; Farlee, R.; Sleight, A. W.; Wang, Y.; Bein, T.; Moller, K.; Moroney, L. M. Inorg. Chem. 1988, 27, 221-228.
  4. Herron, N. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 1995, 21, 283-298.
  5. Chen, W.; Wang, Z.; Lin, Z.; Lin, L.; Fang, K.; Xu, Y.; Su, M.;Lin, J. J. Appl. Phys. 1998, 83, 3811-3815 https://doi.org/10.1063/1.366611
  6. Tani, T.; Murofushi, M. J. Imaging Sci. Technol. 1994, 38, 1-9.
  7. Takahashi, K.; Miyahara, J.; Shibahara, Y. J. Electrochem. Soc. 1985, 132(6), 1492-1494. https://doi.org/10.1149/1.2114149
  8. Zadorozhnii, A. I.; Panina, L. K.; Sakash, V. F.; Strakhov, L. P.; Kholodkevich, S. V. Sov. Phys. Solid State 1980, 22(10), 1713-1715.
  9. Goldbach, A.; Iton, L.; Grimsditch, M.; Saboungi, M. L. J. Am. Chem. Soc. 1996, 118, 2004-2007. https://doi.org/10.1021/ja9531788
  10. Bogomolov, V. N.; Kholodkevich, S. V.; Romanov, S. G.; Agroskin, L. S. Solid State Communications 1983, 47(3), 181-182. https://doi.org/10.1016/0038-1098(83)90704-4
  11. Tamura, K.; Hosokawa, S.; Endo, H.; Yamasaki, S.; Oyanagi, H. Journal of the Physical Society of Japan 1986, 55(2), 528-533. https://doi.org/10.1143/JPSJ.55.528
  12. Wang, Y.; Herron, N. J. Phys. Chem. 1987, 91, 5005-5008. https://doi.org/10.1021/j100303a023
  13. Bogomolov, V. N.; Lutsenko, E. L.; Petranovskii, V. P.; Kholodkevich, S. V. JETP Lett. 1976, 23(9), 482-484.
  14. Bogomolov, V. N.; Zadorozhnii, A. I.; Petranovskii, V. P.; Fokin, A. V.; Kholodkevich, S. V. JETP Lett. 1979, 29(7), 373-375.
  15. Bogomolov, V. N.; Poborchy, V. V.; Romanov, S. G.; Shagin, S.I. J. Phys. C: Solid State Phys. 1985, 18, L313-L317. https://doi.org/10.1088/0022-3719/18/12/003
  16. Terasaki, O.; Yamazaki, K.; Thomas, J. M.; Ohsuna, T.; Watanabe, D.; Sanders, J. V.; Barry, J. C. Nature 1987, 330, 58-60. https://doi.org/10.1038/330058a0
  17. Terasaki, O.; Yamazaki, K.; Thomas, J. M.; Ohsuna, T.; Watanabe, D.; Sanders, J. V.; Barry, J. C. Journal of Solid State Chemistry 1988, 77, 72-83. https://doi.org/10.1016/0022-4596(88)90092-8
  18. Bogomolov, V. N.; Efimov, A. N.; Ivanova, M. S.; Poborchii, V.V.; Romanov, S. G.; Smolin, Yu. I.; Shepelev, Yu. F. Sov. Phys. Solid State 1992, 34(6), 916-919.
  19. Lee, S. H. M. E. Thesis, Kyungpook National University, 1999.
  20. Poborchii, V. V. Solid State Communications 1998, 107(9), 513-518. https://doi.org/10.1016/S0038-1098(98)00205-1
  21. Nouze, Y.; Kodaira, T.; Terasaki, O.; Yamazaki, K.; Goto, T.;Watanabe, D.; Thomas, J. M. J. Phys.: Condens. Matter 1990, 2(23), 5209-5217. https://doi.org/10.1088/0953-8984/2/23/011
  22. Lin, Z.; Wang, Z.; Chen, W.; Lir, L.; Li, G.; Liu, Z.; Han, H.;Wang, Z. Solid State Communications 1996, 100(12), 841-843. https://doi.org/10.1016/S0038-1098(96)00526-1
  23. Charnell, J. F. J. Crystal. Growth 1971, 8, 291-294. https://doi.org/10.1016/0022-0248(71)90074-1
  24. Bogomolov, V. N.; Petranovskii, V. P. Zeolites 1986, 6, 418-419. https://doi.org/10.1016/0144-2449(86)90020-5
  25. Cruz, W. V.; Leung, P. C. W.; Seff, K. J. Am. Chem. Soc. 1978, 100, 6997-7003. https://doi.org/10.1021/ja00490a036
  26. Mellum, M. D.; Seff, K. J. Phys. Chem. 1984, 88, 3560-3563. https://doi.org/10.1021/j150660a036
  27. Kwon, J. H.; Jang, S. B.; Kim, Y.; Seff, K. J. Phys. Chem. 1996, 100, 13720-13724. https://doi.org/10.1021/jp9603647
  28. Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997.
  29. Firor, R. L.; Seff, K. J. Am. Chem. Soc. 1978, 100, 3091-3096. https://doi.org/10.1021/ja00478a023
  30. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390-397. https://doi.org/10.1107/S0567739468000756
  31. International Tables for X-ray Crystallography; Ibers, J. A.;Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71-98.
  32. Cromer, D. T. Acta Crystallogr. 1965, 18, 17-23. https://doi.org/10.1107/S0365110X6500004X
  33. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 148-150.
  34. Lee, S. H.; Kim, Y.; Kim, D. S.; Seff, K. Bull. Korean Chem. Soc. 1998, 19(1), 98-103.
  35. Handbook of Chemistry and Physics, 70th ed.; The chemical Rubber Co.: Cleveland, OH, 1989/1990; p F-18.
  36. Jang, S. B.; Jeong, M. S.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 3091-3096. https://doi.org/10.1021/jp9639612