DOI QR코드

DOI QR Code

Synthesis and Characterization of Nanostructured Titania Films for Dye-Sensitized Solar Cells

  • Hwang, Kyung-Jun (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Yoo, Seung-Joon (Department of Environmental and Chemical Engineering, Seonam University) ;
  • Jung, Sung-Hoon (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Park, Dong-Won (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Sun-Il (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Lee, Jae-Wook (Department of Chemical and Biochemical Engineering, Chosun University)
  • Published : 2009.01.20

Abstract

The nature and morphology of titanium dioxide films play a significant role in determining the overall efficiency of dye-sensitized solar cell (DSSCs). In this work, the preparation of nanostructured titania particles by sol-gel method (SG-$TiO_2$) and its characterization were investigated for the application of DSSCs. The samples were characterized by XRD, XPS, FE-SEM, BET and FT-IR analysis. The energy conversion efficiency of SG-$TiO_2$ was approximately 8.3 % under illumination with AM 1.5 (100 mW/$cm^2$) simulated sunlight. DSSCs made of SG-$TiO_2$ nanocrystalline films as photoanodes achieved better energy conversion efficiency compared to those prepared using commercially available Degussa P25.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
  2. Kazmerski, L. L. J. of Electron Spectroscopy and Related Phenomena 2006, 150, 105 https://doi.org/10.1016/j.elspec.2005.09.004
  3. Ko, Y. S.; Kim, M. H.; Kwon, Y. U. Bull. Korean Chem. Soc. 2008, 29(2), 463 https://doi.org/10.5012/bkcs.2008.29.2.463
  4. Kang, M. G.; Ryu, K. S.; Chang, S. H.; Park, N. G.; Hong, J. S.; Kim, K. J. Bull. Korean Chem. Soc. 2004, 25(5), 742 https://doi.org/10.5012/bkcs.2004.25.5.742
  5. Hoshikawa, T.; Ikebe, T.; Yamada, M.; Kikuchi, R.; Eguchi, K. J. Photochem. Photobiol. A 2006, 184, 78 https://doi.org/10.1016/j.jphotochem.2006.04.001
  6. Xia, J.; Li, F.; Huang, C.; Zhai, J.; Jiang, L. Solar Energy Materials & Solar Cells 2006, 90, 944 https://doi.org/10.1016/j.solmat.2005.05.021
  7. Kalyanasundaran, K.; Grätzel, M. Coordination Chemistry Reviews 1998, 177, 347 https://doi.org/10.1016/S0010-8545(98)00189-1
  8. Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373 https://doi.org/10.1021/ja01145a126
  9. Scherrer, P. Math. Phys. 1918, 2, 98
  10. Gratzel, M. Prog. Photovolt. Res. Appl. 2000, 8, 171 https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  11. Moudler, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Eden Praitie Perkin-Elmer: MN, 1992
  12. Park, N. G.; Frank, A. J. J. Phys. Chem. B 2000, 104(38), 8989 https://doi.org/10.1021/jp994365l
  13. Puziy, A. M.; Matynia, T.; Gawdzik, B.; Poddubnaya, O. I. Langmuir 1999, 15, 6016 https://doi.org/10.1021/la981369t
  14. Szombathely, M. V.; Brauer, P.; Jaroniecl, M. J. Comput. Chem. 1992, 13, 17 https://doi.org/10.1002/jcc.540130104
  15. Roth, T. M.; Weese, J.; Honerkamp, J. Comput. Phys. Commun. 2001, 139, 279 https://doi.org/10.1016/S0010-4655(01)00217-X
  16. Weese, J. Comput. Phys. Commun. 1992, 69, 99 https://doi.org/10.1016/0010-4655(92)90132-I
  17. Hwang, K. J.; Yoo, S. J.; Kim, S. S.; Kim, J. M.; Shim, W. G.; Kim, S. I.; Lee, J. W. J. Nanosci. Nanotechnol. 2008, 8, 4976 https://doi.org/10.1166/jnn.2008.1199
  18. Leon, C. P.; Kador, L.; Peng, B.; Thelakkat, M. J. Phys. Chem. B 2006, 110(17), 8723 https://doi.org/10.1021/jp0561827
  19. Finnie, K. S.; Bartlett, J. R.; Woolfrey, J. L. Langmuir 1998, 14, 2744 https://doi.org/10.1021/la971060u
  20. Grätzel, M. J. Photochem. Photobiol. C 2003, 4, 145 https://doi.org/10.1016/S1389-5567(03)00026-1

Cited by

  1. Synthesis, physical properties, and characterization of starch-based blend films by adding nano-sized TiO2/poly(methyl metacrylate-co-acrylamide) vol.120, pp.3, 2010, https://doi.org/10.1002/app.33408
  2. High efficiency dye-sensitized solar cells exploiting sponge-like ZnO nanostructures vol.14, pp.47, 2012, https://doi.org/10.1039/c2cp42705b
  3. Enhanced photovoltaic properties of TiO2 film prepared by polycondensation in sol reaction vol.2, pp.7, 2012, https://doi.org/10.1039/c2ra01218a
  4. A New Unsymmetrical Zinc Phthalocyanine as Photosensitizers for Dye-sensitized Solar Cells vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1225
  5. Effect of Anatase Synthesis on the Performance of Dye-Sensitized Solar Cells vol.10, pp.1, 2015, https://doi.org/10.1186/s11671-015-0991-3
  6. Thick Mesoporous Photoanodes by Morphological Manipulation vol.31, pp.42, 2015, https://doi.org/10.1021/acs.langmuir.5b02718
  7. Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye sensitized solar cells vol.81, pp.3, 2017, https://doi.org/10.1007/s10971-016-4237-3
  8. Film as an Environmental Photocatalyst vol.9, pp.19, 2017, https://doi.org/10.1021/acsami.7b03481
  9. Photovoltaics literature survey (No. 70) vol.17, pp.4, 2009, https://doi.org/10.1002/pip.904
  10. Photoelectric Characteristics of Nanocrystalline TiO2 Film Prepared from TiO2 Colloid Sol for Dye‐Sensitized Solar Cell vol.30, pp.10, 2009, https://doi.org/10.5012/bkcs.2009.30.10.2365
  11. Analysis of adsorption properties of N719 dye molecules on nanoporous TiO2 surface for dye-sensitized solar cell vol.256, pp.17, 2009, https://doi.org/10.1016/j.apsusc.2009.12.128
  12. Nanocrystalline TiO2 films treated with acid and base catalysts for dye-sensitized solar cells vol.22, pp.6, 2009, https://doi.org/10.1016/j.apt.2010.11.003
  13. Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells vol.439, pp.1, 2009, https://doi.org/10.1088/1742-6596/439/1/012012