DOI QR코드

DOI QR Code

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Published : 2009.04.20

Abstract

Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

Keywords

References

  1. ANSI News and Publications; New York, U.S.A., November 20, 2006.
  2. Dahn, J. R.; Fuller, E. W.; Obrovac, M.; Von Sacken, U. Solid State Ionics 1994, 69, 265. https://doi.org/10.1016/0167-2738(94)90415-4
  3. Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T. J. Power Sources 2006, 155, 401. https://doi.org/10.1016/j.jpowsour.2005.12.002
  4. Aurbach, D.; Levi, M. D.; Levi, E.; Markovsky, B.; Salitra, G.; Teller, H. In Batteries for Portable Applications and Electric Vehicles; Holms, C. F.; Landgrebe, A. R., Eds.; The Electrochemical Society Proceedings Series: Pennington(NJ), U.S.A., 1997; Vol. PV 97-18, p 941.
  5. Ota, H.; Kominato, A.; Chun, W.; Yasukawa, E.; Kasuya, S. Proceedings of the 11th International Meeting on Lithium Batteries; Monterey(CA), U.S.A., 2002; Extended abstract no. 201.
  6. Doh, C. H.; Kim, D. H.; Kim, H. S.; Shin, H. M.; Jeong, Y. D.; Moon, S. I.; Jin, B. S.; Eom, S. W.; Kim, H. S.; Kim, K. W.; Oh, D. H.; Veluchamy, A. J. Power Sources 2008, 175, 881. https://doi.org/10.1016/j.jpowsour.2007.09.102
  7. MacNeil, D. D.; Dahn, J. R. J. Electrochem. Soc. 1999, 146, 2068. https://doi.org/10.1149/1.1391893
  8. Ota, H.; Akai, T.; Namita, H.; Yamaguchi, S.; Nomura, M. J. Power Sources 2003, 119-121, 567. https://doi.org/10.1016/S0378-7753(03)00291-X
  9. Dedryvere, R.; Martinez, H.; Leroy, S.; Lemordant, D.; Bonhomme, F.; Biensan, P.; Gonbeau, D. J. Power Sources 2007, 174, 462. https://doi.org/10.1016/j.jpowsour.2007.06.033
  10. Leroy, S.; Martinez, H.; Dedryvere, R.; Lemordant, D.; Gonbeau, D. Applied Surface Science 2007, 253, 4895. https://doi.org/10.1016/j.apsusc.2006.10.071
  11. MacNeil, D. D.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, 1205. https://doi.org/10.1149/1.1407245
  12. Eriksson, T.; Anderson, A. M.; Bishop, A. G.; Gejke, C.; Gustafsson, T.; Thomas, J. O. J. Electrochem. Soc. 2002, 149, A69. https://doi.org/10.1149/1.1426398
  13. MacNeil, D. D.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A912. https://doi.org/10.1149/1.1483865
  14. Levy, S. C.; Bro, P. Battery Hazards and Accident Prevention; Plenum press: New York, U.S.A., 1994.
  15. Jang, Y.-I.; Dudney, N. J.; Blom, D. A.; Allard, L. F. J. Electrochem. Soc. 2002, 149, A1442. https://doi.org/10.1149/1.1511751
  16. Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Solid State Ionics 1996, 83, 167. https://doi.org/10.1016/0167-2738(95)00231-6
  17. Saito, Y.; Kanari, K.; Takano, K. J. Power Sources 1997, 68, 451. https://doi.org/10.1016/S0378-7753(96)02583-9

Cited by

  1. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge vol.5, pp.70, 2015, https://doi.org/10.1039/C5RA05897J
  2. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes vol.4, pp.7, 2014, https://doi.org/10.1039/c3ra45748f
  3. Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries vol.32, pp.50, 2021, https://doi.org/10.1088/1361-6528/ac17fe