References
- Morgan, R. A.; Anderson, W. F. Annu. Rev. Biochem. 1993, 62, 191. https://doi.org/10.1146/annurev.bi.62.070193.001203
- Fire, A.; Xu, S.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. Nature 1998, 391, 806. https://doi.org/10.1038/35888
- Felgner, P. L.; Ringold, G. M. Nature 1989, 337, 387. https://doi.org/10.1038/337387a0
- Lee, Y.; Koo, H.; Lim, Y.; Lee, Y.; Mo, H.; Park, J. Bioorg. Med. Chem. Lett. 2004, 14, 2637. https://doi.org/10.1016/j.bmcl.2004.02.061
- Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. Proc. Natl. Acad. Sci. 1995, 92, 7297. https://doi.org/10.1073/pnas.92.16.7297
- Lim, Y.; Kim, S.-M.; Lee, Y.; Lee, W.; Yang, T.; Lee, M.; Suh, H.; Park, J. J. Am. Chem. Soc. 2001, 123, 2460. https://doi.org/10.1021/ja005715g
- Lee, Y.; Mo, H.; Koo, H.; Park, J.-Y.; Cho, M. Y.; Jin, G.; Park, J.-S. Bioconjugate Chem. 2007, 18, 13. https://doi.org/10.1021/bc060113t
- Hudde, T.; Rayner, S. A.; Comer, R. M.; Weber, M.; Isaacs, J. D.; Waldmann, H.; Larkin, D. F. P. Gene Ther. 1999, 6, 939. https://doi.org/10.1038/sj.gt.3300886
- Lee, J. H.; Lim, Y.; Choi, J. S.; Lee, Y.; Kim, T.; Kim, H. J.; Yoon, J. K.; Kim, K.; Park, J. Bioconjugate Chem. 2003, 14, 1214. https://doi.org/10.1021/bc034095g
- Green, M.; Lowenstein, P. M. Cell 1988, 55, 1179. https://doi.org/10.1016/0092-8674(88)90262-0
- Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J. B. Proc. Natl. Acad. Sci. 2000, 97, 13003. https://doi.org/10.1073/pnas.97.24.13003
- Choi, J. S.; Nam, K.; Park, J.-Y.; Kim, J.-B.; Lee, J.-K. Park, J.-S. J. Controlled Rel. 2004, 99, 445. https://doi.org/10.1016/j.jconrel.2004.07.027
- Nam, H. Y.; Hahn, H. J.; Nam, K.; Choi, W.-H.; Jeong, Y.; Kim, D.-E.; Park, J.-S. Int. J. Pharm. 2008, 363, 199. https://doi.org/10.1016/j.ijpharm.2008.07.021
- Funhoff, A. M.; Nostrum, C. F.; Lok, M. C.; Fretz, M. M.; Crommelin, D. J. A.; Hennink, W. E. Bioconjugate Chem. 2004, 15, 1212. https://doi.org/10.1021/bc049864q
- Lee, Y.; Cho, M. Y.; Mo, H.; Nam, K.; Koo, H.; Jin, G.; Park, J. S. Bull. Kor. Chem. Soc. 2008, 29, 666. https://doi.org/10.5012/bkcs.2008.29.3.666
- Pouton, C. W.; Lucas, P.; Thomas, B. J.; Uduehi, A. N.; Milroy, D. A.; Moss, S. H. J. Controlled. Rel. 1998, 53, 289. https://doi.org/10.1016/S0168-3659(98)00015-7
- Hess, G. T.; Humphries, W. H.; Fay, N. C.; Payne, C. K. Biochim. Biophys. Acta-Mol. Cell Res. 2007, 1773, 1583. https://doi.org/10.1016/j.bbamcr.2007.07.009
- Lee, M.; Nah, J.-W.; Kwon, Y.; Koh, J. J.; Ko, K. S.; Kim, S. W. Pharm. Res. 2001, 18, 427
-
M
$\ddot{a}$ nnist$\ddot{o}$ , M.; Vanderkerken, S.; Toncheva, V.; Elomaa, M.; Ruponen, M.; Schacht, E.; Urtti, A. J. Controlled Rel. 2002, 83, 169. https://doi.org/10.1016/S0168-3659(02)00178-5 - Moret, I.; Peris, J. E.; Guillem, V. M.; Benet, M.; Revert, F.; Dsai, F.; Crespo, A.; Alino, S. F. J. Controlled Rel. 2001, 76, 169. https://doi.org/10.1016/S0168-3659(01)00415-1
- Vives, E.; Brodin, P.; Lebleu, B. J. Biol. Chem. 1997, 272, 16010. https://doi.org/10.1074/jbc.272.25.16010
- Zhang, C.; Tang, N.; Liu, X.; Liang, W.; Xu, W.; Torchilin, V. P. J. Controlled Rel. 2006, 112, 229. https://doi.org/10.1016/j.jconrel.2006.01.022
- Kim, H. J.; Kwon, M. S.; Choi, J. S.; Kim, B. H.; Yoon, J. K.; Kim, K.; Park, J. Bull. Kor. Chem. Soc. 2007, 28, 63. https://doi.org/10.5012/bkcs.2007.28.1.063
- Kim, H. J.; Kwon, M. S.; Choi, J. S.; Yang, S. M.; Yoon, J. K.; Kim, K.; Park, J. Biomaterials 2006, 27, 2292. https://doi.org/10.1016/j.biomaterials.2005.10.023
Cited by
- -3-Guanidinopropyl Methacrylamide Block Copolymers as Hepatocyte-Targeting Gene Carriers vol.22, pp.8, 2011, https://doi.org/10.1021/bc100525y
- Studies on Guanidinated N-3-Aminopropyl Methacrylamide-N-2-Hydroxypropyl Methacrylamide Co-polymers as Gene Delivery Carrier vol.23, pp.1-4, 2012, https://doi.org/10.1163/092050610X545058
- Gene Delivery Using Ternary Lipopolyplexes Incorporating Branched Cationic Peptides: The Role of Peptide Sequence and Branching vol.10, pp.1, 2013, https://doi.org/10.1021/mp300187t
- -Arginine Polymers of Poly(amidoamino acid) Structure: Synthesis, Acid/Base Properties and Preliminary Cytocompatibility and Cell-Permeating Characterizations vol.14, pp.3, 2013, https://doi.org/10.1002/mabi.201300387
- Poly-L-Arginine Grafted Silica Mesoporous Nanoparticles for Enhanced Cellular Uptake and their Application in DNA Delivery and Controlled Drug Release vol.30, pp.2, 2013, https://doi.org/10.1002/ppsc.201200089
- Noncovalently associated cell-penetrating peptides for gene delivery applications vol.4, pp.6, 2013, https://doi.org/10.4155/tde.13.44
- Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery vol.22, pp.10, 2016, https://doi.org/10.1002/psc.2927
- Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery vol.31, pp.6, 2009, https://doi.org/10.1016/j.biomaterials.2009.10.022
- Preparation and characterization of guanidinated N-3-aminopropyl methacrylamide-N-2-hydroxypropyl methacrylamide copolymers as gene delivery carriers vol.152, pp.suppl1, 2011, https://doi.org/10.1016/j.jconrel.2011.08.068
- AT2R Gene Delivered by Condensed Polylysine Complexes Attenuates Lewis Lung Carcinoma after Intravenous Injection or Intratracheal Spray vol.15, pp.1, 2009, https://doi.org/10.1158/1535-7163.mct-15-0448
- Charge Type, Charge Spacing, and Hydrophobicity of Arginine-Rich Cell-Penetrating Peptides Dictate Gene Transfection vol.13, pp.3, 2009, https://doi.org/10.1021/acs.molpharmaceut.5b00871
- Titrating Polyarginine into Nanofibers Enhances Cyclic-Dinucleotide Adjuvanticity in Vitro and after Sublingual Immunization vol.7, pp.5, 2009, https://doi.org/10.1021/acsbiomaterials.0c01429
- Properties of polyplexes formed between a cationic polymer derived from L-arabinitol and nucleic acids vol.45, pp.22, 2021, https://doi.org/10.1039/d1nj00606a