DOI QR코드

DOI QR Code

27Al Solid-state NMR Structural Studies of Hydrotalcite Compounds Calcined at Different Temperatures

  • Park, Tae-Joon (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Choi, Sung-Sub (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Kim, Yong-Ae (Department of Chemistry, Hankuk University of Foreign Studies)
  • Published : 2009.01.20

Abstract

Hydrotalcites are anionic clays that are quite prevalent in nature and their importance is growing more and more because of their very wide range of potential applications and uses. Understanding the structural and compositional changes that occur on the molecular scale during the thermal decomposition of hydrotalcite compounds is essential for the basic prediction and comprehensive understanding of the behavior and technical application of these materials. In this study, several hydrotalcite compounds calcined at different temperatures for applications in a chlorine resistant textile were prepared and 27-Aluminm solid-state nuclear magnetic resonance (NMR) spectroscopy was used as a tool to study their local structure and behavior. The changes in the Al coordination of the hydrotalcite compounds were investigated with one dimensional (1D) solid-state magic angle spinning (MAS) NMR spectroscopy. The two broad resonances arising from the structurally different Al coordinations of these compounds were clearly resolved by two dimensional (2D) triple quantum magic angle spinning (3QMAS) NMR spectroscopy.

Keywords

References

  1. Bellotto, M.; Rebours, B.; Clause, O.; Lynch, J. J. Phys. Chem. 1996, 100, 8527 https://doi.org/10.1021/jp960039j
  2. Reichle, W. T. Solid State Ionics 1986, 22, 135 https://doi.org/10.1016/0167-2738(86)90067-6
  3. Hansen, H. C. B.; Taylor, R. M. Clay Minerals 1991, 26, 311 https://doi.org/10.1180/claymin.1991.026.3.02
  4. Dupuis, J.; Battut, J. P.; Fawal, Z.; Hajjimohamad, H. Solid State Ionics 1990, 42, 251 https://doi.org/10.1016/0167-2738(90)90015-J
  5. Marcelin, G.; Stockhausen, N. J.; Post, J. F. M.; Schutz, A. J. Phys. Chem. 1989, 93, 4646 https://doi.org/10.1021/j100348a048
  6. Pol, A. V. D.; Mojet, B. L.; Ven, E. V. D.; Boer, E. D. J. Phys. Chem. 1994, 98, 4050 https://doi.org/10.1021/j100066a024
  7. Cavani, F.; Trifiro, F.; Vaccari, A. Catalysis Today 1991, 11, 173 https://doi.org/10.1016/0920-5861(91)80068-K
  8. Oriakhi, C. O.; Farr, I. V.; Lerner, M. M. Clays Clay Miner. 1997, 45, 194 https://doi.org/10.1346/CCMN.1997.0450207
  9. Lichti, G.; Mulcahy, J. Chemistry in Australia 1998, 65, 10
  10. Seida, Y.; Nakano, Y. J. Chem. Eng. Japan 2001, 34, 906 https://doi.org/10.1252/jcej.34.906
  11. Roh, Y.; Lee, S. Y.; Elless, M. P.; Foss, J. E. Clays and Clay Minerals 2000, 48, 266 https://doi.org/10.1346/CCMN.2000.0480213
  12. Seida, Y.; Nakano, Y.; Nakamura, Y. Water Res. 2001, 35, 2341 https://doi.org/10.1016/S0043-1354(00)00523-6
  13. Kloprogge, J. T.; Frost, R. L. Phys. Chem. Chem. Phys. 1999, 1, 1641 https://doi.org/10.1039/a808496c
  14. Rey, F.; Forne´s, V. J. Chem. Soc. Faraday Trans. 1992, 88, 2233 https://doi.org/10.1039/ft9928802233
  15. Valcheva-Traykova, M. L.; Davidova1, N. P.; Weiss, A. H. J. Mater. Sci. 1993, 28, 2157 https://doi.org/10.1007/BF00367577
  16. Kim, Y.; Kim, A. Bull. Kor. Chem. Soc. 2002, 23, 1729 https://doi.org/10.5012/bkcs.2002.23.12.1729
  17. Kim, Y. Bull. Kor. Chem. Soc. 2003, 24, 1281 https://doi.org/10.5012/bkcs.2003.24.9.1281
  18. Kim, Y. Bull. Kor. Chem. Soc. 2006, 27, 986 https://doi.org/10.5012/bkcs.2006.27.7.986
  19. Park, T.-J.; Kim, J.; Kim, T.-K.; Park, H. M.; Choi, S.-S.; Kim, Y. Bull. Kor. Chem. Soc. 2008, 29, 2459 https://doi.org/10.5012/bkcs.2008.29.12.2459
  20. Park, T. J.; Kim, Y. J. The Korea Mang. Res. Soc. 2007, 11, 42
  21. Amoureuxa, J. P.; Fernandeza, C.; Steuernagel, S. J. Mag. Res. Series A 1996, 123, 116 https://doi.org/10.1006/jmra.1996.0221
  22. Blinc, R. Ferroelectrics 1994, 151, 227 https://doi.org/10.1080/00150199408244746
  23. Frydman, L.; Harwood, J. S. J. Am. Chem. Soc. 1995, 117, 5367 https://doi.org/10.1021/ja00124a023
  24. Medek, A.; Harwood, J. S.; Frydman, L. J. Am. Chem. Soc. 1995, 117, 12779 https://doi.org/10.1021/ja00156a015
  25. Fernandez, C.; Amoureux, J. P. Chem. Phys. Lett. 1995, 242, 449 https://doi.org/10.1016/0009-2614(95)00768-Y
  26. Ganapathy, S.; Das, T. K.; Vetrivel, R.; Ray, S. S.; Sen, T.; Sivasanker, S.; Delevoye, L.; Fernandez, C.; Amoureux, J. P. J. Am. Chem. Soc. 1998, 120, 4752 https://doi.org/10.1021/ja972714o
  27. Massiot, D.; Touzo, B.; Trumeau, D.; Coutures, J. P.; Virlet, J.; Florian, P.; Grandinetti, P. J. Solid State Nucl. Mag. Res. 1996, 6, 73 https://doi.org/10.1016/0926-2040(95)01210-9
  28. Brinker, C. J.; Scherer, G. W. Sol–gel Science; Academic Press: 1989.

Cited by

  1. Ab Initio Study of Reaction Pathways Related to Initial Steps of Thermal Decomposition of the Layered Double Hydroxide Compounds vol.116, pp.25, 2012, https://doi.org/10.1021/jp303529y
  2. Calcined, Rare Earth Modified Hydrotalcite as a Solid, Reusable Catalyst for Dimethyl Carbonate Synthesis vol.51, pp.18, 2012, https://doi.org/10.1021/ie300678p
  3. Monodispersed and Stable Nano Copper(0) from Copper- Aluminium Hydrotalcite: Importance in CC Couplings of Deactivated Aryl Chlorides vol.355, pp.4, 2013, https://doi.org/10.1002/adsc.201201007
  4. Role of Calcination Temperature on the Hydrotalcite Derived MgO–Al2O3 in Converting Ethanol to Butanol vol.59, pp.1, 2016, https://doi.org/10.1007/s11244-015-0504-8
  5. Polymorphic Characterization of Pharmaceutical Solids, Donepezil Hydrochloride, by 13C CP/MAS Solid-State Nuclear Magnetic Resonance Spectroscopy vol.30, pp.9, 2009, https://doi.org/10.5012/bkcs.2009.30.9.2007
  6. Comprehensive investigation of CO2 adsorption on Mg-Al-CO3 LDH-derived mixed metal oxides vol.1, pp.41, 2013, https://doi.org/10.1039/c3ta13039h
  7. Phosphoric acid intercalated Mg-Al hydrotalcite-like compounds for catalytic carboxylation reaction of methanol in a continuous system vol.493, pp.None, 2015, https://doi.org/10.1016/j.apcata.2015.01.004
  8. Improved Aging Stability of Ethylene-Norbornene Composites Filled with Lawsone-Based Hybrid Pigment vol.11, pp.4, 2009, https://doi.org/10.3390/polym11040723
  9. In Situ Spinel Formation in a Smart Nano -Structured Matrix for No-Cement Refractory Castables vol.13, pp.6, 2009, https://doi.org/10.3390/ma13061403