DOI QR코드

DOI QR Code

An ELISA-on-a-Chip Biosensor System for Early Screening of Listeria monocytogenes in Contaminated Food Products

  • Seo, Sung-Min (Program for Bio-Microsystem Technology, Korea University) ;
  • Cho, Il-Hoon (Program for Bio-Microsystem Technology, Korea University) ;
  • Kim, Joo-Ho (Graduate School of Life Sciences and Biotechnology,Korea University) ;
  • Jeon, Jin-Woo (Program for Bio-Microsystem Technology, Korea University) ;
  • Oh, Eun-Gyoung (Food Safety Research Center, National Fisheries Research and Development Institute) ;
  • Yu, Hong-Sik (Food Safety Research Center, National Fisheries Research and Development Institute) ;
  • Shin, Soon-Bum (Food Safety Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Hee-Jung (Food Safety Research Center, National Fisheries Research and Development Institute) ;
  • Paek, Se-Hwan (Department of Biotechnology, Korea University)
  • Published : 2009.12.20

Abstract

An enzyme-linked immunosorbent assay (ELISA)-on-a-chip (EOC) biosensor combined with cell concentration technology based on immuno-magnetic separation (IMS) was investigated for use as a potential tool for early screening of Listeria monocytogenes (L. monocytogenes) in food products. The target analyte is a well-known pathogenic foodborne microorganism and outbreaks of the food poisoning typically occur due to contamination of normal food products. Thus, the aim of this study was to develop a rapid and reliable sensor that could be utilized on a daily basis to test food products for the presence of this pathogenic microorganism. The sensor was optimized to provide a high detection capability (e.g., 5.9 ${\times}\;10^3$ cells/mL) and, to eventually minimize cultivation time. The cell density was condensed using IMS prior to analysis. Since the concentration rate of IMS was greater than 100-fold, this combination resulted in a detection limit of 54 cells/mL. The EOC-IMS coupled analytical system was then applied to a real sample test of fish intestines. The system was able to detect L. monocytogenes at a concentration of 2.4 CFU/g after pre-enrichment for 6 h from the onset of cell cultivation. This may allow us to monitor the target analyte at a concentration less than 1 CFU/g within a 9 h-cultivation provided a doubling time of 40 min is typically maintained. Based on this estimation, the EOC-IMS system can screen and detect the presence of this microorganism in food products almost within working hours.

Keywords

References

  1. Ramaswamy, V.; Cresence, V. M.; Rejitha, J. S.; Lekshmi, M. U.; Dharsana, K. S.; Prasad, S. P.; Vijila, H. M. J. Microbiol. Immunol. Infect. 2007, 40, 4
  2. Shyamal, K. M.; Ronald, N.; Frederick, C. P. Appl. Environ. Microbiol. 1986, 52, 510
  3. Dykes, G. A.; Dworaczek, M. Lett. Appl. Microbiol. 2002, 35, 538 https://doi.org/10.1046/j.1472-765X.2002.01237.x
  4. Heisick, J. E.; Wagner, D. E.; Nierman, M. L.; Peeler, J. T. Appl. Environ. Microbiol. 1989, 55, 1925
  5. Fleming, D. W.; Cochi, S. L.; Macdonald, K. L.; Brondum, J.; Hayes, P. S.; Plikaytis, B. D.; Holmes, M. B.; Audurier, A.; Broome, C. V.; Reingold, A. L. N. Engl. J. Med. 1985, 312, 404 https://doi.org/10.1056/NEJM198502143120704
  6. Scotter, S. L.; Langton, S.; Lombard, B.; Schulten, S.; Nagelkerke, N.; Veld, P. H.; Rollier, P.; Lahellec, C. Int. J. Food Microbiol. 2001, 64, 295 https://doi.org/10.1016/S0168-1605(00)00462-1
  7. Takkai, S.; Orii, F.; Yasuda, K.; Innoue, S.; Tsubaki, S. Microbiol. Immunol. 1990, 34, 631 https://doi.org/10.1111/j.1348-0421.1990.tb01038.x
  8. Reissbrodt, R. Int. J. Food Microbiol. 2004, 95, 1 https://doi.org/10.1016/j.ijfoodmicro.2004.01.025
  9. Navas, J.; Ortiz, S.; Lopez, P.; Jantzen, M. M.; Lopez, V.; Martinez, J. V. Foodborne Pathog. Dis. 2006, 3, 347 https://doi.org/10.1089/fpd.2006.3.347
  10. Nilsson, H. O.; Aleljung, P.; Nilsson, I.; Tyszkiewicz, T.; Wadstrom, T. J. Microbiol. Methods 1996, 27, 73 https://doi.org/10.1016/0167-7012(96)00930-X
  11. Ueda, S.; Maruyama, T.; Kuwabara, Y. Biocontrol Sci. 2006, 11, 129 https://doi.org/10.4265/bio.11.129
  12. Roth, J. J. Histochem. Cytochem. 1982, 30, 691 https://doi.org/10.1177/30.7.7050239
  13. Skjerve, E.; Rovik, L. M.; Olsvik, O. Appl. Environ. Microbiol. 1990, 56, 3478
  14. Usleber, E.; Abramson, D.; Gessler, R.; Smith, D. M.; Cleat, R. M.; Martlbauer, E. Appl. Environ. Microbiol. 1996, 2, 3858
  15. Xiulan, S.; Xiaolian, Z.; Jian, T.; Zhou, J.; Chu, F. S. Int. J. Food Microbiol. 2005, 99, 185 https://doi.org/10.1016/j.ijfoodmicro.2004.07.021
  16. Hao, D. Y.; Bcauchat, L. R.; Brackett, R. E. Appl. Environ. Microbiol. 1987, 53, 955
  17. Hearty, S.; Leonard, P.; Kennedy, R. J. Microbiol. Methods 2006, 66, 294 https://doi.org/10.1016/j.mimet.2005.12.009
  18. Shim, W. B.; Choi, J. G.; Kim, J. Y.; Yang, Z. Y.; Lee, K. H.; Kim, M. G.; Ha, S. D.; Kim, K. S.; Kim, K. Y.; Kim, C. H.; Ha, K. S.; Eremin, S. A.; Chung, D. H. J. Microbiol. Biotechnol. 2007, 17, 1152
  19. Bautista, D. A.; Elankumaran, S.; Arking, J. A.; Heckert, R. A. J. Vet. Diagn. Invest. 2002, 14, 427 https://doi.org/10.1177/104063870201400514
  20. Faulk, W. P.; Taylor, G. M. Immunocytochem. 1971, 8, 1081 https://doi.org/10.1016/0019-2791(71)90496-4
  21. Moeremans, M.; Daneels, G.; Dijek, A. V.; Langanger, G.; Mey, J. D. J. Immunol. Methods 1984, 74, 353 https://doi.org/10.1016/0022-1759(84)90303-X
  22. Cho, J. H.; Han, S. M.; Paek, E. H.; Cho, I. H.; Paek, S. H. Anal. Chem. 2006, 78, 793 https://doi.org/10.1021/ac051453v
  23. Paek, S. H.; Cho, J. H.; Cho, I. H.; Kim, Y. K.; Oh, B. K. Bio. Chip. J. 2007, 1, 1
  24. Han, S. M.; Cho, J. H.; Cho, I. H.; Paek, E. H.; Oh, H. B.; Kim, B. S.; Ryu, C. S.; Lee, K. H.; Kim, Y. K.; Paek, S. H. Anal. Chim. Acta 2007, 587, 1 https://doi.org/10.1016/j.aca.2007.01.028
  25. Entoth, H.; Engstrand, L. J. Clin. Microbiol. 1995, 33, 2162
  26. Cho, I. H.; Paek, E. H.; Kim, Y. K.; Kim, J. H.; Paek, S. H. Anal. Chim. Acta 2009, 632, 247 https://doi.org/10.1016/j.aca.2008.11.019
  27. Heather, S.; Helene, M. Infection. Immunity. 2006, 74, 6675 https://doi.org/10.1128/IAI.00886-06
  28. Shim, W. B.; Choi, J. G.; Kim, J. Y.; Yang, Z. Y.; Lee, K. H.; Kim, M. G.; Ha, S. D.; Kim, K. S.; Kim, K. Y.; Kim, C. H.; Ha, K. S.; Eremin, S. A.; Chung, D. H. J. Food Prot. 2008, 71, 781
  29. World Health Organization; Food and Agriculture Organization of the United Nations. Risk assessment of Listeria monocytogenes in ready-to-eat foods: Technical report: Geneva, Switzerland, 2004; p. 80
  30. Cheryl, L. B.; Veronica, C.; Natalia, A. K.; Benjamin, E. S.; Darren, E. H.; John, H. B. Nature 2008, 451, 350 https://doi.org/10.1038/nature06479
  31. Augustin, J. C.; Agnes, B. D.; Laurent, R.; Vincent, C. Appl. Environ. Microbiol. 2000, 66, 1706 https://doi.org/10.1128/AEM.66.4.1706-1710.2000
  32. Besse, N. G.; Audient, N.; Barre, L.; Cauquil, A.; Cornu, M.; Colin, P. Int. J. Food Microbiol. 2006, 110, 43 https://doi.org/10.1016/j.ijfoodmicro.2006.03.002

Cited by

  1. Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes vol.405, pp.10, 2013, https://doi.org/10.1007/s00216-013-6742-3
  2. An antibody–magnetic nanoparticle conjugate-based selective filtration method for the rapid colorimetric detection of Listeria monocytogenes vol.6, pp.22, 2014, https://doi.org/10.1039/C4AY01313A
  3. An innate immune system-mimicking, real-time biosensing of infectious bacteria vol.140, pp.17, 2015, https://doi.org/10.1039/C5AN00912J
  4. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing vol.143, pp.7, 2018, https://doi.org/10.1039/C7AN02039B
  5. Planar Interdigitated Aptasensor for Flow-Through Detection of Listeria spp. in Hydroponic Lettuce Growth Media vol.20, pp.20, 2020, https://doi.org/10.3390/s20205773
  6. Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection vol.19, pp.6, 2009, https://doi.org/10.1111/1541-4337.12656