DOI QR코드

DOI QR Code

TMEDA Catalyzed Henry (Nitroaldol) Reaction under Metal and Solvent-free Conditions

  • Published : 2009.08.20

Abstract

The Henry (nitroaldol) reaction proceeds under mild conditions with catalytic amount of tetramethylethylenediamine (TMEDA) to afford $\beta$-nitro alkanol in considerably excellent yield. Structurally diverse aldehydes react with nitromethane in presence of 0.3 equiv of TMEDA under solvent-free condition at rt. The low catalytic loading and mild reaction condition are the key features of the catalytic method.

Keywords

References

  1. Henry, L. Bull. Soc. Chim. Fr. 1895, 13, 999
  2. Rosini, G. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, UK, 1999; Vol. 2, pp 321
  3. Pinnick, H. W. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1990; Vol. 38, Chapter 3
  4. Norman, B. H.; Morris, M. L. Tetrahedron Lett. 1992, 33, 6803 https://doi.org/10.1016/S0040-4039(00)61780-X
  5. Kawabata, T.; Kiryu, Y.; Sugiure, Y.; Fuji, K. Tetrahedron Lett. 1993, 34, 5127 https://doi.org/10.1016/S0040-4039(00)60694-9
  6. Sasai, H.; Kim, W.-S.; Suzuki, T.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 6123 https://doi.org/10.1016/0040-4039(94)88093-X
  7. Corey, E. J.; Zhang, F.-Y.; Angew. Chem., Int. Ed. 1999, 38, 1931 https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1931::AID-ANIE1931>3.0.CO;2-4
  8. Grembecka, J.; Kafarski, P. Mini Rev. Med. Chem. 2001, 1, 133 https://doi.org/10.2174/1389557013406990
  9. Sohtome, Y.; Takemura, N.; Iguchi, T.; Hashimoto, Y.; Nagasawa, K. Synlett 2006, 144
  10. Klein, G.; Pandiaraju, S.; Reiser, O. Tetrahedron Lett. 2002, 43, 7503 https://doi.org/10.1016/S0040-4039(02)01768-9
  11. Ma, D.; Pan, Q.; Han, F. Tetrahedron Lett. 2002, 43, 9401 https://doi.org/10.1016/S0040-4039(02)02332-8
  12. Misumi, Y.; Matsumoto, K. Angew. Chem., Int. Ed. 2002, 41, 1031 https://doi.org/10.1002/1521-3773(20020315)41:6<1031::AID-ANIE1031>3.0.CO;2-K
  13. Hanessian, S.; Devasthale, P. V. Tetrahedron Lett. 1996, 37, 987 https://doi.org/10.1016/0040-4039(95)02359-3
  14. For a recent example of an enantioselective Henry reaction, see: Palomo, C.; Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005, 44, 3881 https://doi.org/10.1002/anie.200463075
  15. Rosini, G.; Ballini, R. Synthesis 1988, 833
  16. Rosini, G. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, pp 321
  17. Shvekhgeimer, M. A. Russ. Chem. Rev. 1998, 67, 35 https://doi.org/10.1070/RC1998v067n01ABEH000285
  18. Luzzio, F. A. Tetrahedron 2001, 57, 915 https://doi.org/10.1016/S0040-4020(00)00965-0
  19. Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726 https://doi.org/10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D
  20. Toda, F. Acc. Chem. Res. 1995, 28, 480 https://doi.org/10.1021/ar00060a003
  21. Mezger, J. O. Angew. Chem., Int. Ed. 1998, 37, 2975 https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21<2975::AID-ANIE2975>3.0.CO;2-A
  22. Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025 https://doi.org/10.1021/cr940089p
  23. Li, G.; Wei, H.-X.; Wills, S. Tetrahedron Lett. 1998, 39, 4607 https://doi.org/10.1016/S0040-4039(98)00850-8
  24. Ramachandran, P. V.; Reddy, M. V. R.; Rudd, M. T. Tetrahedron Lett. 1999, 40, 627 https://doi.org/10.1016/S0040-4039(98)02504-0
  25. Ramachandran, P. V.; Reddy, M. V. R.; Rudd, M. T. Chem. Commun. 1999, 1979
  26. Costa, M.; Chiusoli, G. P.; Taffurelli, D.; Dalmonego, G. J. Chem. Soc. Perkin Trans. 1 1998, 1541
  27. Kovacevic, B.; Maksic, Z. B. Org. Lett. 2001, 3, 1523 https://doi.org/10.1021/ol0158415
  28. Yamamota, Y.; Kojima, S. In The Chemistry of Amidines and Imidates; Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1991; Vol. 2, p 485
  29. Wei, T. B.; Lin, Q.; Zhang, Y. M.; Wang, H. Synth. Commun. 2004, 34, 12, 2205 https://doi.org/10.1081/SCC-120038502
  30. Chauhan, M.; Boudjouk, P. Can. J. Chem. 2000, 78, 1396 https://doi.org/10.1139/cjc-78-11-1396
  31. Nishiyama, H.; Furuta, A. Chem. Commun. 2007, 760
  32. Klein, G.; Pandiaraju, S.; Reiser, O. Tetrahedron Lett. 2002, 43, 7503 https://doi.org/10.1016/S0040-4039(02)01768-9
  33. Kim, S. S.; Song, D. H. Eur. J. Org. Chem. 2005, 1777
  34. Kim, S. S.; Lee, S. H. Synth. Commun. 2005, 35, 751 https://doi.org/10.1081/SCC-200050390
  35. Kim, S. S.; Lee, S. H.; Kwak, J. M. Tetrahedron Asymmetry 2006, 17, 1165 https://doi.org/10.1016/j.tetasy.2006.04.011
  36. Kim, S. S.; Kwak, J. M. Tetrahedron 2006, 62, 49 https://doi.org/10.1016/j.tet.2005.09.131
  37. Kim, S. S.; Rajagopal, G.; Song, D. H. J. Organomet. Chem. 2004, 689, 1734 https://doi.org/10.1016/j.jorganchem.2004.01.025
  38. Kim. S. S.; Kim, D. W.; Rajagopal, G. Synthesis 2004, 213
  39. Kim, S. S.; Rajagopal, G.; Kim, D. W.; Song, D. H. Synth. Commun. 2004, 34, 2973 https://doi.org/10.1081/SCC-200026652
  40. Kim, S. S.; George, S. C. Bull. Korean Chem. Soc. 2008, 29(7), 1167 https://doi.org/10.5012/bkcs.2008.29.6.1167
  41. Kadam, S. T.; Kim, S. S. Synthesis 2008, 267
  42. Kadam, S. T.; Kim, S. S. Catal. Commun. 2008, 9, 1342 https://doi.org/10.1016/j.catcom.2007.11.030
  43. Majhi, A.; Kim, S. S.; Kim, H. S. Applied Organometal. Chem. 2008, 22, 407 https://doi.org/10.1002/aoc.1416
  44. Majhi, A.; Kim, S. S.; Kadam, S. T. Tetrahedron 2008, 64, 5509 https://doi.org/10.1016/j.tet.2008.03.106
  45. Kadam S. T.; Kim, S. S. Bull. Korean Chem. Soc. 2008, 29(7), 1320 https://doi.org/10.5012/bkcs.2008.29.7.1320
  46. Weeden, A. J.; Chisholm, D. J. Tetrahedron Lett. 2006, 47, 9313 https://doi.org/10.1016/j.tetlet.2006.10.107
  47. Cwik, A.; Fuchs, A.; Hell, Z.; Clacens, J. M. Tetrahedron 2005, 61, 4015 https://doi.org/10.1016/j.tet.2005.02.055
  48. Hirata, N.; Hayashi, M. Synthetic Commun. 2007, 37, 1653 https://doi.org/10.1080/00397910701263833
  49. Han, J.; Xu, Y.; Su, Y.; She, X.; Pan, X. Catal. Commun. 2008, 9, 2077 https://doi.org/10.1016/j.catcom.2008.04.006
  50. Quin, B.; Xiao, X.; Liu, X.; Huang, J.; Wen, Y.; Feng, X. J. Org. Chem. 2007, 72, 9323 https://doi.org/10.1021/jo701898r

Cited by

  1. Biocatalytic Approaches to the Henry (Nitroaldol) Reaction vol.2012, pp.16, 2012, https://doi.org/10.1002/ejoc.201101840
  2. Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation vol.34, pp.1, 2012, https://doi.org/10.1007/s10529-011-0754-x
  3. The Henry Reaction in [Bmim][PF6]-based Microemulsions Promoted by Acylase vol.18, pp.11, 2013, https://doi.org/10.3390/molecules181113910
  4. ) metal–organic framework derived from a flexible amido tripodal acid vol.44, pp.22, 2015, https://doi.org/10.1039/C4DT03087G
  5. Catalytic insertion of aldehydes into dihalonitroacetophenones via sequential bond scission-aldol reaction-acyl transfer vol.52, pp.17, 2016, https://doi.org/10.1039/C5CC09753C
  6. Organocatalytic Insertion of Isatins into Aryl Difluoronitromethyl Ketones vol.82, pp.2, 2017, https://doi.org/10.1021/acs.joc.6b02704
  7. A new sustainable protocol for the synthesis of nitroaldol derivatives via Henry reaction under solvent-free conditions vol.7, pp.1, 2014, https://doi.org/10.1080/17518253.2014.893028
  8. ChemInform Abstract: TMEDA Catalyzed Henry (Nitroaldol) Reaction under Metal and Solvent-Free Conditions. vol.40, pp.51, 2009, https://doi.org/10.1002/chin.200951064
  9. Zinc metal–organic frameworks: efficient catalysts for the diastereoselective Henry reaction and transesterification vol.43, pp.21, 2009, https://doi.org/10.1039/c4dt00219a