DOI QR코드

DOI QR Code

Deguanylation of Guanine Based-Nucleosides and Calf Thymus DNA Induced by Halogenated Alkanes at the Physiological Condition

  • Published : 2009.12.20

Abstract

Massive deguanylation of guanine based-nucleosides induced by halogenated alkanes at the physiological condition have been observed. For the study of deguanylation effects by the different substituents and/or functionality in halogenated alkanes, diverse kinds of halogenated alkanes were incubated with guanine based-nucleosides (ddG, dG and guanosine) for 48 h at the physiological condition (pH 7.4, 37$^{\circ}C$), which were analyzed by HPLC and further confirmed by LC-MS. Among the sixteen different halogenated alkanes, we observed massive deguanylation of nucleosides by 2-bromo-2-methylpropane, 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane. The order of deguanylation rate was highest in 2-bromo-2-methylpropane followed by 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane. In addition, time and dose response relationship of deguanylation in guanine basednucleosides induced by 2-bromo-2-methylpropane, 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane at the physiological condition were investigated. Deguanylation of calf thymus DNA induced by halogenated alkanes was also investigated. These results suggest that the toxic effect of certain halogenated alkanes might be from the depurination of nucleosides.

Keywords

References

  1. Kunkel, T. A. Proc. Natl. Acad. Sci. USA 1984, 81, 1494 https://doi.org/10.1073/pnas.81.5.1494
  2. Vousden, K. H.; Bos, J. L.; Marsheall, C. J.; Phillips, D. H. Proc. Natl. Acad. Sci. USA 1986, 83, 1222 https://doi.org/10.1073/pnas.83.5.1222
  3. Drake, J. W.; Baltz, R. H. Annu. Rev. Biochem. 1976, 45, 11 https://doi.org/10.1146/annurev.bi.45.070176.000303
  4. Schaaper, R. M.; Leob, L. A. Proc. Natl. Acad. Sci. USA 1981, 78, 1773 https://doi.org/10.1073/pnas.78.3.1773
  5. Lucas, L. T.; Gatehouse, D.; Shuker, D. E. G. J. Biol. Chem. 1999, 274, 18319 https://doi.org/10.1074/jbc.274.26.18319
  6. Sherchan, J.; Choi, H.; Lee, E. S. Bull. Korean Chem. Soc. 2009, 30(10), 2309 https://doi.org/10.5012/bkcs.2009.30.10.2309
  7. Sherchan, J.; Yun, M.; Lee, E. S. Bull. Korean Chem. Soc. 2009, 30(10), 2318 https://doi.org/10.5012/bkcs.2009.30.10.2318
  8. Lag, M.; Omichinski, J. G.; Dybing, E.; Nelson, S. D.; Soderlund, E. J. Chem. Res. Toxicol. 1994, 93, 73
  9. Jones, A. R.; Fakhouri, G.; Gadiel, P. Experientia. 1979, 35, 1432 https://doi.org/10.1007/BF01962767
  10. Jones, A. R.; Wells, G. Xenobiotica. 1981, 11, 541 https://doi.org/10.3109/00498258109045865
  11. James, S. P.; Pue, M. A.; Richards, D. H. Toxicol. Lett. 1981, 8, 7 https://doi.org/10.1016/0378-4274(81)90130-2
  12. Tachizawa, H.; MacDonald, T. L.; Neal, R. A. Mol. Pharmacol. 1982, 22, 745
  13. Volp, R. F.; Sipes, I. G.; Falcoz, C.; Carter, D. E.; Gross, J. F. Toxicol. Appl. Pharmacol. 1984, 75, 8 https://doi.org/10.1016/0041-008X(84)90070-X
  14. Dybing, E.; Omichinski, J. G.; Saderlund, E. J.; Brunborg, G.; Lag, M.; Holme, J. A.; Nelson, S. D. Reviews in Biochemical Toxicology; Hodgson, E.; Bend, J. R.; Philpot, R. M., Eds.; Elsevier Science Publishing: New York, 1989; vol. 10, p. 139
  15. Pearson, P. G.; Omichinski, J. G.; Myers, T. G.; Søderlund, E. J.; Dybing, E.; Nelson, S. D. Chem. Res. Toxicol. 1990, 3, 458 https://doi.org/10.1021/tx00017a012
  16. Pearson, P. G.; Søderlund, E. J.; Dybing, E.; Nelson, S. D. Biochemistry 1990, 29, 4971 https://doi.org/10.1021/bi00472a030
  17. Cmarik, J. L.; Inskeep, P. B.; Meredith, M. J.; Meyer, D. J.; Ketterer, B.; Guengerich, F. P. Cancer Res. 1990, 50, 2747
  18. Zoltewicz, J. A.; Clark, D. F.; Sharpless, T. W.; Grahe, G. J. Am. Chem. Soc. 1970, 92, 1741 https://doi.org/10.1021/ja00709a055
  19. York, J. L. J. Org. Chem. 1981, 46, 2171 https://doi.org/10.1021/jo00323a040
  20. Garrett, E. R.; Mehta, P. J. J. Am. Chem. Soc. 1972, 94, 8542 https://doi.org/10.1021/ja00779a041

Cited by

  1. Polyvinyl Pyrrolidone Promotes DNA Cleavage by a ROS-Independent and Depurination Mechanism vol.47, pp.6, 2013, https://doi.org/10.1021/es3046229
  2. Non-Enzymatic Depurination of Nucleic Acids: Factors and Mechanisms vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0115950
  3. Identification of a N 7-guanine adduct of 1-bromopropane in calf thymus DNA by mass spectrometry vol.12, pp.1, 2016, https://doi.org/10.1007/s13273-016-0002-5
  4. Chromatographic approaches for the characterization and quality control of therapeutic oligonucleotide impurities vol.32, pp.1, 2017, https://doi.org/10.1002/bmc.4088