DOI QR코드

DOI QR Code

Intermolecular Hydrogen Bonding and Vibrational Analysis of N,N-Dimethylformamide Hexamer Cluster

  • Park, Sun-Kyung (Department of Chemistry, Chungbuk National University) ;
  • Min, Kyung-Chul (Department of Chemistry, Chungbuk National University) ;
  • Lee, Choong-Keun (Department of Chemistry, Chungbuk National University) ;
  • Hong, Soon-Kang (Department of Fire Service Administration, Chodang University) ;
  • Kim, Yun-Soo (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Nam-Soo (Department of Chemistry, Chungbuk National University)
  • Published : 2009.11.20

Abstract

Hexamer cluster of N,N-dimethylformamide(DMF) based on the crystal structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties in the density functional force field. The geometry (point group $C_i$) of fully optimized hexamer clustered DMF shows quite close similarity to the crystal structure weakly intermolecular hydrogen bonded each other. Stretching force constants for intermolecular hydrogen bonded methyl and formyl hydrogen atoms with nearby oxygen atom, methyl C–H${\cdots}$O and formyl C–H${\cdots}$O, were obtained in 0.055 $\sim$ 0.11 and $\sim$ 0.081 mdyn/$\AA$, respectively. In-plane bending force constants for hydrogen bonded methyl hydrogen atoms were in 0.25 $\sim$ 0.33, and for formyl hydrogen $\sim$ 0.55 mdynÅ. Torsion force constants through hydrogen bonding for methyl hydrogen atoms were in 0.038 $\sim$ 0.089, and for formyl hydrogen atom $\sim$ 0.095 mdynÅ. Calculated Raman and infrared spectral features of single and hexamer cluster represent well the experimental spectra of DMF obtained in the liquid state. Noncoincidence between IR and Raman frequency positions of stretching C=O, formyl C–H and other several modes was interpreted in terms of the intermolecular vibrational coupling in the condensed phase.

Keywords

References

  1. Borrmann, H.; Persson, I.; Sandstr$\ddot{o}$m, M.; Stalhandske, C. M. V. J. Chem. Soc., Perkin Trans. 2000, 2, 393
  2. Stalhandske, C. M. V.; Minkmm, J.; Sandstr$\ddot{o}$m, M.; Papai, I.; Johansson, P. Vib. Spectrosc. 1997, 14, 207. https://doi.org/10.1016/S0924-2031(97)00003-9
  3. Durgaprasad, G.; Sathyanarayana, D. N.; Patel, C. C. Bull. Chem. Soc. Jpn. 1971, 44, https://doi.org/10.1021/jp960170r
  4. Zhou, X.; Krauser, J. A.; Tate, D. R.; VanBuren, A. S.; Clark, J. A.; Moody, P. R.; Liu, R. J. Phys. Chem. 1996, 100, 16822 https://doi.org/10.1246/bcsj.61.3845
  5. Radnai, T.; Itoh, S.; Othaki, H. Bull. Chem. Soc. Jpn. 1988, 61, 3845. https://doi.org/10.1021/j100121a018
  6. Othaki, H.; Itoh, S.; Rode, B. M. Bull. Chem. Soc. Jpn. 1986, 59, 271. https://doi.org/10.1002/(SICI)1097-461X(1997)65:5<709::AID-QUA37>3.0.CO;2-U
  7. Othaki, H.; Itoh, S.; Yamaguchi, T.; Ishigro, S.; Rode, B. M. Bull. Chem. Soc. Jpn. 1983, 56, 3406 https://doi.org/10.1039/f29858100277
  8. Schultz, G.; Hargitti, I. J. Phys. Chem. 1993, 97, 4966 https://doi.org/10.1021/ja993600a
  9. Cordeiro, J. M. M. Inter. J. Quan. Chem. 1997, 65, 709 https://doi.org/10.5012/bkcs.2007.28.12.2454
  10. Miyake, M.; Kaji, O.; Nakagawa, N.; Suzuki, T. J. Chem. Soc., Faraday Trans. 2 1985, 81, 277 https://doi.org/10.1039/f29858100277
  11. Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. J. Am. Chem. Soc. 2000, 122, 4750 https://doi.org/10.1002/(SICI)1096-987X(19990730)20:10<1067::AID-JCC9>3.0.CO;2-V
  12. Kim, K. H.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 2454 https://doi.org/10.5012/bkcs.2008.29.10.1951
  13. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford and New York, 1999
  14. Lee, S.-H.; Palmo, K.; Krimm S. J. Comput. Chem. 1999, 20, 1067 https://doi.org/10.1016/j.molliq.2003.09.005
  15. Lee, C.; Park, S.-K.; Lee, Min, K.-C.; Kim, Y.; Lee, N.-S. Bull. Korean Chem. Soc. 2008, 29, 1951 https://doi.org/10.5012/bkcs.2008.29.10.1951
  16. Giorgini, M. G.; Musso, M.; Asenbaum, A.; D$\ddot{o}$ge, G. Mol. Phys. 2000, 98, 783 https://doi.org/10.1021/jp070301w
  17. Kirillov, S. A. J. Mol. Liq. 2004, 110, 95. https://doi.org/10.1021/jp9842650
  18. Giorgini, M. G. Pure Appl. Chem. 2004, 76, 157 https://doi.org/10.1351/pac200476010157
  19. Musso, M.; Giorgini, M. G.; Torii, H.; Dorka, R.; Schiel, D.; Asenbaum, A.; Keutel, Z.; Oehme, K.-L. J. Mol. Liq. 2006, 125, 115. https://doi.org/10.1016/j.molliq.2005.11.003
  20. Torii, H.; Musso, M.; Giorgini, M. G. J. Phys. Chem. A 2005, 109, 7797 https://doi.org/10.1021/jp052565t
  21. Torii, H. J. Phys. Chem. B 2007, 111, 5434 https://doi.org/10.1021/jp070301w
  22. Torii, H. J. Phys. Chem. A 1999, 103, 2843. https://doi.org/10.1021/jp9842650
  23. Musso, M.; Torii, H.; Ottaviani, P.; Asenbaum, A.; Giorgini, M. G. J. Phys. Chem. A 2002, 106, 10152 https://doi.org/10.1021/jp021440a
  24. Torii, H. J. Phys. Chem. A 2006, 110, 4822. https://doi.org/10.1021/jp060014c
  25. Torii, H. Chem. Phys. Lett. 2005, 414, 417 https://doi.org/10.1016/j.cplett.2005.07.114
  26. Dub, P. A.; Filippov, O. A.; Belkova, N. V.; Rodriguez-Zubiri, M.; Poli, R. J. Phys. Chem. A 2009, 113, 6348 https://doi.org/10.1021/jp902394j
  27. Myshakina, N. S.; Asher, S. A. J. Phys. Chem. B 2007, 111, 4271. https://doi.org/10.1021/jp065247i
  28. Meic, Z.; Baranovic, G.; Smrecki, V.; Novak, P.; Keresztury, G.;Holly, H. J. Mol. Str. 1997, 408/409, 399. https://doi.org/10.1016/S0022-2860(96)09657-3
  29. Michalska, D.; Bienko, D. C.; Czarnik-Matusewicz, B.; Wierzejewska, M.; Sandorfy, C.; Zeegers-Huyskens, Th. J. Phys. Chem. B 2007, 111, 12228. https://doi.org/10.1021/jp073772r
  30. Jabłonski, M. J. Mol. Struct. (Theochem) 2007, 820, 118. https://doi.org/10.1016/j.theochem.2007.06.015
  31. Katsumoto, Y.; Komatsu, H.; Ohno, K. J. Am. Chem. Soc. 2006, 128, 9278. https://doi.org/10.1021/ja061667+
  32. Xu, Z.; Li, H.; Wang, C.; Wu, T.; Han, S. Chem. Phys. Lett. 2004, 394, 405. https://doi.org/10.1016/j.cplett.2004.07.051
  33. Biliskov, N.; Baranovic, G. J. Mol. Liq. 2009, 144, 155. https://doi.org/10.1016/j.molliq.2008.11.004
  34. Xu, Z.; Li, H.; Wang, C.; Pan, H.; Han, S. J. Chem. Phys. 2006, 124, 244502. https://doi.org/10.1063/1.2206177
  35. Lei, Y.; Li, H.; Pan, H.; Han, S. J. Phys. Chem. A 2003, 107, . https://doi.org/10.1021/jp026638+
  36. Legon, A. C.; Rego, C. A. J. Mol. Struct. 1988, 189, 137. https://doi.org/10.1016/0022-2860(88)80220-5
  37. Hartmann, M.; Radom, L. J. Phys. Chem. A 2000, 104, 968. https://doi.org/10.1021/jp992234e
  38. Moore, W. H.; Krimm, S. Proc. Nat. Acad. Sci. USA 1975, 72, 4933. https://doi.org/10.1073/pnas.72.12.4933
  39. Legon, A. C.; Lister, D. G. J. Mol. Struct. 1996, 382, 63. https://doi.org/10.1016/0022-2860(96)09236-8
  40. Legon, A. C.; Cope, P.; Millen, D. J. J. Chem. Soc., Perkin Trans.1986, 82, 1189.
  41. Curuksu, J.; Zacharias, M.; Lavery, R.; Zakrzewska, K. Nucleic Acids Res. 2009, 37, 3766. https://doi.org/10.1093/nar/gkp234

Cited by

  1. Effect of Chain Structure on the Rheological Properties of Vinyl Acetate–Vinyl Alcohol Copolymers in Solution and Bulk vol.47, pp.14, 2014, https://doi.org/10.1021/ma5003326
  2. Rich Capping Ligand–Ag Colloid Interactions vol.119, pp.49, 2015, https://doi.org/10.1021/acs.jpcc.5b09958
  3. probed by in situ Raman and FT-IR spectroscopy vol.3, pp.22, 2015, https://doi.org/10.1039/C5TA00476D
  4. ) coordination polymers containing dicarboxylic acids and nicotinamide pillars vol.20, pp.4, 2018, https://doi.org/10.1039/C7CE01988B
  5. Vibrational Analysis of Azacrown Ether Complex with Li Metal Cation vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3385
  6. Infrared optical constants, molar absorption coefficients, dielectric constants, molar polarisabilities, transition moments and dipole moment derivatives of liquid N,N-dimethylformamide-carbon t vol.79, pp.2, 2009, https://doi.org/10.1016/j.saa.2010.12.019
  7. 2D Porous Honeycomb Polymers versus Discrete Nanocubes from Trigonal Trinuclear Complexes and Ligands with Variable Topology vol.18, pp.16, 2009, https://doi.org/10.1002/chem.201103688
  8. X‐ray diffraction and infrared spectroscopy of N,N‐dimethylformamide and dimethyl sulfoxide solvatomorphs of betulonic acid vol.101, pp.12, 2009, https://doi.org/10.1002/jps.23321
  9. Hydrogen‐bonded complexes of sulfonamides and thioamides with DMF: FT‐IR and DFT study, NBO analysis vol.26, pp.4, 2013, https://doi.org/10.1002/poc.3094
  10. Hybrid Perovskite Thin‐Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases vol.29, pp.2, 2017, https://doi.org/10.1002/adma.201604113
  11. A promising azeotrope-like mosquito repellent blend vol.7, pp.None, 2009, https://doi.org/10.1038/s41598-017-10548-y