DOI QR코드

DOI QR Code

Thermal and Photochemistry of Methyl Iodide on Ice Film Grown on Cu(111)

  • Sohn, Young-Ku (Department of Chemistry, Yeungnam University) ;
  • White, John M. (Center for Materials Chemistry, Department of Chemistry and Biochemistry)
  • Published : 2009.07.20

Abstract

Thermal and photochemistry of methyl iodide ($CH_3I)\;adsorbed\;on\;D_2O$ ice film on Cu(111) at 100 K were studied using temperature-programmed desorption (TPD) time-of-flight mass spectrometry (TOF-MS), X-ray and ultraviolet photoelectron spectroscopies. On the basis of TPD, multilayer and monolayer $CH_3I$ molecules desorb from $D_2O$ ice layer at 120 and 130 K, respectively. Photo-irradiation at 100 K exhibits dramatic changes in the TPD and I $3d_{5/2}\;XPS\;of\;CH_3I$ on ice film, due to a dramatic dissociation of $CH_3I$. The dissociation is likely activated by solvated electrons transferred from the metal substrate during photo-irradiation. No other photo-initiated reaction products were found within our instrumental detection limit. During photo-irradiation, the $CH_3I$, $CH_3$ and I could be trapped (or solvated) in ice film by rearrangement (and self-diffusion) of water molecules. A newly appeared parent molecular desorption peak at 145 K is attributed to trapped $CH_3I$. In addition, the $CH_3$ and I may diffuse through ice and chemisorb on Cu(111), indicated by TPD and I $d_{5/2}$ XPS taken with photo-irradiation time, respectively. No molecular ejection was found during photo-irradiation at 100 K. The work functions for $CH_3I/Cu(111),\;D_2O/Cu(111)\;and\;CH_3I/D_2$O/Cu(111) were all measured to be about 3.9 eV, 1.0 eV downward shift from that of clean Cu(111).

Keywords

References

  1. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley: New York, 1994
  2. Bent, B. E. Chem. Rev. 1996, 96, 1361 https://doi.org/10.1021/cr940201j
  3. Ma, Z.; Zaera, F. Surf. Sci. Rep. 2006, 61, 229 https://doi.org/10.1016/j.surfrep.2006.03.001
  4. Somorjai, G. A.; Park, J. Y. J. Chem. Phys. 2008, 128, 182504 https://doi.org/10.1063/1.2888970
  5. Faradzhev, N. S.; Perry, C. C.; Kusmierek, D. O.; Fairbrother, D. H.; Madey, T. E. J. Chem. Phys. 2004, 121, 8547 https://doi.org/10.1063/1.1796551
  6. Perry, C. C.; Faradzhev, N. S.; Madey, T. E.; Fairbrother, D. H. J. Chem. Phys. 2007, 126, 204701 https://doi.org/10.1063/1.2722749
  7. Lu, Q.-B.; Sanche, L. Phys. Rev. Lett. 2001, 87, 078501 https://doi.org/10.1103/PhysRevLett.87.078501
  8. Tachikawa, H. Phys. Chem. Chem. Phys. 2008, 10, 2200 https://doi.org/10.1039/b718017a
  9. Barone, S. B.; Zondlo, M. A.; Tolbert, M. A. J. Phys. Chem. A 1999, 103, 9717 https://doi.org/10.1021/jp990400c
  10. Huff, A. K.; Abbatt, J. P. D. J. Phys. Chem. A 2000, 104, 7284 https://doi.org/10.1021/jp001155w
  11. Klan, P.; Holoubek, I. Chemosphere 2002, 46, 1201 https://doi.org/10.1016/S0045-6535(01)00285-5
  12. Garrett, S. J.; Holbert, V. P.; Stair, P. C.; Weitz, E. J. Chem. Phys. 1994, 100, 4615 https://doi.org/10.1063/1.466294
  13. Coon, S. R.; Myli, K. B.; Grassian, V. H. J. Phys. Chem. 1995, 99, 16416 https://doi.org/10.1021/j100044a032
  14. Totir, G. G.; Le, Y.; Osgood, J. R. M. J. Phys. Chem. B 2005, 109, 8452 https://doi.org/10.1021/jp045326z
  15. Zhou, X. L.; White, J. M. Surf. Sci. 1991, 241, 270 https://doi.org/10.1016/0039-6028(91)90087-9
  16. Xi, M.; Bent, B. E. J. Vac. Sci. Technol. B 1992, 10, 2440 https://doi.org/10.1116/1.586037
  17. Lin, J.-L.; Bent, B. E. J. Phys. Chem. 1993, 97, 9713 https://doi.org/10.1021/j100140a030
  18. Hinch, B. J.; Dubois, L. H. J. Chem. Phys. 1992, 96, 3262 https://doi.org/10.1063/1.461971
  19. Grecea, M. L.; Backus, E. H. G.; Fraser, H. J.; Pradeep, T.; Kleyn, A. W.; Bonn, M.; Chem. Phys. Lett. 2004, 385, 244 https://doi.org/10.1016/j.cplett.2003.12.085
  20. Sohn, Y.; Wei, W.; White, J. M. Surf. Sci. 2008, 602, 2706 https://doi.org/10.1016/j.susc.2008.06.025
  21. Perry, C. C.; Faradzhev, N. S.; Fairbrother, D. H.; Madey, T. E. Int. Rev. in Phys. Chem. 2004, 23, 289 https://doi.org/10.1080/01442350412331284625
  22. Lee, H. M.; Suh, S. B.; Kim, K. S. J. Chem. Phys. 2003, 119, 7685 https://doi.org/10.1063/1.1607960
  23. Bovensiepen, U.; Gahl, C.; Wolf, M. J. Phys. Chem. B 2003, 107, 8706 https://doi.org/10.1021/jp034654g
  24. Gahl, C.; Bovensiepen, U.; Frischkorn, C.; Wolf, M. Phys. Rev. Lett. 2002, 89, 107402 https://doi.org/10.1103/PhysRevLett.89.107402
  25. Sohn, Y.; Wei, W.; White, J. M. J. Phys. Chem. C 2007, 111, 5101 https://doi.org/10.1021/jp068398u
  26. Shibaguchi, T.; Onuki, H.; Onaka, R. J. Phys. Soc. Jpn. 1977, 42, 152 https://doi.org/10.1143/JPSJ.42.152
  27. Ryu, S.; Chang, J.; Kwon, H.; Kim, S. K. J. Am. Chem. Soc. 2006, 128, 3500 https://doi.org/10.1021/ja058323o

Cited by

  1. Photodissociation Dynamics of C2H4BrCl: Nonadiabatic Dynamics with Intrinsic Cs Symmetry vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2962