DOI QR코드

DOI QR Code

Dimerization of Fibril-forming Segments of α-Synuclein

  • Published : 2009.08.20

Abstract

We have performed replica-exchange molecular dynamics (REMD) simulations on the dimer formation of fibrilforming segments of $\alpha$-Synuclein (residues 71 - 82) using implicit solvation models with two kinds of force fields- AMBER parm99SB and parm96. We observed spontaneous formation of dimers from the extensive simulations, demonstrating the self-aggregating and fibril forming properties of the peptides. Secondary structure profile and clustering analysis showed that dimers with antiparallel $\beta$-sheet conformations, stabilized by well-defined hydrogen boding, are major species corresponding to global free energy minimum. Parallel dimers with partial $\beta$-sheets are found to be off-pathway intermediates. The relative instability of the parallel arrangements is due to the repulsive interactions between bulky and polar side chains as well as weaker backbone hydrogen bonds.

Keywords

References

  1. Dobson, C. M. Nature 2003, 426, 884 https://doi.org/10.1038/nature02261
  2. Ross, C. A.; Poirier, M. A. Nat. Med. 2004, 10, S10 https://doi.org/10.1038/nm1066
  3. Skovronsky, D. M.; Lee, V. M.-Y.; Trojanowski, J. Q. Annu. Rev. Pathol. Mech. Dis. 2006, 1, 151 https://doi.org/10.1146/annurev.pathol.1.110304.100113
  4. Chiti, F.; Dobson, C. M. Annu. Rev. Biochem. 2006, 75, 333 https://doi.org/10.1146/annurev.biochem.75.101304.123901
  5. Fink, A. Acc. Chem. Res. 2006, 39, 628 https://doi.org/10.1021/ar050073t
  6. Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biophys. 2008, 37, 215 https://doi.org/10.1146/annurev.biophys.37.032807.125924
  7. Dunker, A. K.; Lawson, J. D.; Brown, C. J.; Williams, R. M.; Romero, P.; Oh, J. S.; Oldfield, C. J.; Campen, A. M.; Ratliff, C. M.; Hipps, K. W.; Ausio, J.; Nissen, M. S.; Reeves, R.; Kang, C.; Kissinger, C. R.; Bailey, R. W.; Griswold, M. D.; Chiu, W.; Garner, E. C.; Obradovic, Z. J. Mol. Graph. Modell. 2001, 19, 26 https://doi.org/10.1016/S1093-3263(00)00138-8
  8. Uversky, V. Prot. Sci. 2002, 11, 739 https://doi.org/10.1110/ps.4210102
  9. Ma, B.; Nussinov, R. Curr. Opin. Chem. Biol. 2006, 10, 445 https://doi.org/10.1016/j.cbpa.2006.08.018
  10. Teplow, D. B.; Lazo, N. D.; Bitan, G.; Bernstein, S.; Wyttenbach, T.; Bowers, M. T.; Baumketner, A.; Shea, J. E.; Urbanc, B.; Cruz, L.; Borreguero, J.; Stanley, H. E. Acc. Chem. Res. 2006, 39, 635 https://doi.org/10.1021/ar050063s
  11. L$\ddot{u}$cking, C. B.; Brice, A. Cell. Mol. Life. Sci. 2000, 57, 1894 https://doi.org/10.1007/PL00000671
  12. Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. Nature 2006, 388, 839 https://doi.org/10.1038/42166
  13. Shults, C. W. Proc. Natl. Acad. Sci. USA 2006, 103, 1661 https://doi.org/10.1073/pnas.0509567103
  14. Kim, S.; Seo, J.; Suh, Y. Park. Rel. Dis. 2004, 10, S9 https://doi.org/10.1016/j.parkreldis.2003.11.005
  15. Eliezer, D.; Kutluay, E.; Bussell, Jr., R.; Browne, G. J. Mol. Biol. 2001, 307, 1061 https://doi.org/10.1006/jmbi.2001.4538
  16. Uversky, V. N.; Li, J.; Fink, A. L. J. Biol. Chem. 2001, 276, 10737 https://doi.org/10.1074/jbc.M010907200
  17. Uversky, V. N. J. Biomol. Struct. Dyn. 2003, 21, 211 https://doi.org/10.1080/07391102.2003.10506918
  18. Lee, I.-H.; Kim, H. J.; Lee, C.-H.; Paik, S. R. Bull. Kor. Chem. Soc. 2006, 27, 1001 https://doi.org/10.5012/bkcs.2006.27.7.1001
  19. Ulmer, T. S.; Bax, A.; Cole, N. B.; Nussbaum, R. L. J. Biol. Chem. 2005, 280, 9595 https://doi.org/10.1074/jbc.M411805200
  20. Iwai, A. I.; Yoshimoto, M.; Masliah, E.; Saitoh, T. Biochemistry 1995, 34, 10139 https://doi.org/10.1021/bi00032a006
  21. Yoon, J.; Park, J.; Jang, S.; Lee, K.; Shin, S. J. Biomol. Struct. Dyn. 2008, 25, 505 https://doi.org/10.1080/07391102.2008.10507197
  22. Yoon, J.; Park, J.; Jang, S.; Lee, K.; Shin, S. Bull. Kor. Chem. Soc. 2009, 30, 623 https://doi.org/10.5012/bkcs.2009.30.3.623
  23. Giasson, B. I.; Murray, I. V. J.; Trojanowski, J. Q.; Lee, V. M.-Y. J. Biol. Chem. 2001, 276, 2380 https://doi.org/10.1074/jbc.M008919200
  24. Pawar, A. P.; Dubay, K. F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C. M. J. Mol. Biol. 2005, 350, 379 https://doi.org/10.1016/j.jmb.2005.04.016
  25. Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 1999, 314, 141 https://doi.org/10.1016/S0009-2614(99)01123-9
  26. Case, D. A.; Darden, T. A.; Cheatham, T. E. I.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Wang, B.; Pearlman, D. A.; Crowley, M.; Brozell, S.; Tsui, V.; Gohlke, H.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Schafmeister, C.; Caldwell, J. W.; Ross, W. S.; Kollman, P. A. AMBER8 University of California, San Francisco, 2004
  27. Mongan, J.; Simmerling, C.; McCammon, J. A.; Case, D. A.; Onufriev, A. J. Chem. Theory Comput. 2006, 3, 156 https://doi.org/10.1021/ct600085e
  28. Onufriev, A.; Bashford, D.; Case, D. A. Proteins 2004, 55, 383 https://doi.org/10.1002/prot.20033
  29. Shell, M. S.; Ritterson, R.; Dill, K. A. J. Phys. Chem. B 2008, 112, 6878 https://doi.org/10.1021/jp800282x
  30. Ryckaert, J. P.; Cicotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327 https://doi.org/10.1016/0021-9991(77)90098-5
  31. Shell, M. S.; Ritterson, R.; Dill, K. A. J. Phys. Chem. B 2008, 112, 6878 https://doi.org/10.1021/jp800282x
  32. Zhang, W.; Wu, C.; Duan, Y. J. Chem. Phys. 2005, 123, 154105 https://doi.org/10.1063/1.2056540

Cited by

  1. Computational Study on Oligomer Formation of Fibril-forming Peptide of α-Synuclein vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.848
  2. Besides Fibrillization: Putative Role of the Peptide Fragment 71–82 on the Structural and Assembly Behavior of α-Synuclein vol.53, pp.41, 2014, https://doi.org/10.1021/bi5008707
  3. Theoretical reconsideration on the hydrogen bonding and coordination interactions of chlorophyll a in aqueous solution vol.15, pp.3, 2011, https://doi.org/10.1142/s1088424611003148