DOI QR코드

DOI QR Code

Simultaneous Spectrophotometric Determination of Copper, Nickel, and Zinc Using 1-(2-Thiazolylazo)-2-Naphthol in the Presence of Triton X-100 Using Chemometric Methods

화학계량학적 방법을 사용한 Triton X-100이 함유된 1-(2-Thiazolylazo)-2-Naphthol을 사용한 구리, 니켈과 아연의 동시 분광광도법적 정량

  • Low, Kah Hin (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Zain, Sharifuddin Md. (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Abas, Mhd. Radzi (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Misran, Misni (Department of Chemistry, Faculty of Science, University of Malaya) ;
  • Mohd, Mustafa Ali (Department of Pharmacology, Faculty of Medicine, University of Malaya)
  • Published : 2009.12.20

Abstract

Multivariate models were developed for the simultaneous spectrophotometric determination of copper (II), nickel (II) and zinc (II) in water with 1-(2-thiazolylazo)-2-naphthol as chromogenic reagent in the presence of Triton X-100. To overcome the drawback of spectral interferences, principal component regression (PCR) and partial least square (PLS) multivariate calibration approaches were applied. Performances were validated with several test sets, and their results were then compared. In general, no significant difference in analytical performance between PLS and PCR models. The root mean square error of prediction (RMSEP) using three components for $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ were 0.018, 0.010, 0.011 ppm, respectively. Figures of merit such as sensitivity, analytical sensitivity, limit of detection (LOD) were also estimated. High reliability was achieved when the proposed procedure was applied to simultaneous determination of $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ in synthetic mixture and tap water.

Triton X-100이 함유된 상태에서 정색시약인 1-(2-thiazolylazo)-2-naphthol이 첨가된 물에서 구리 (II), 니켈(II)과 아연(II)의 동시 분광광도법적 정량을 위한 다변량 모델들이 개발되었다. 분광학적 간섭의 단점을 극복하기 위해서, 주성분회귀분석법(PCR)과 부분최소자승법(PLS) 다변량 분석법적 접근이 적용되었다. 다양한 시험 세트를 사용하여 본 방법의 수행이 입증되었고 그 결과들이 비교되었다. 일반적으로 PLS와 PCR 모델들 사이에 분석적 수행에서의 심각한 차이가 없었다. $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ 의 세 성분들을 사용한 예측의 제곱근 평균 제곱 오차(RMSEP)들은 각각 0.018, 0.010, 0.011 ppm이었다. 또한 감도, 분석감도, 검출한계(LOD)와 같은 가치들의 측면들이 평가되었다. 본 논문에서 제안하는 과정이 화합물 혼합용액과 수돗물 속의 $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$의 동시 검출에 적용되었을 때에 높은 신뢰도가 성취되었다.

Keywords

References

  1. Ministry of Science, Technology and Environment, Malaysia, Kuala Lumpur Environmental Quality (Sewage Industrial Effluent) Regulations 1979.1997
  2. Sanchez, E.; Colmenarejo, M. F.; Vicente, J.; Rubio, A.; Garcia, M. G.; Travieso, L.; Borja, R. Ecological Indicators 2007, 7, 315 https://doi.org/10.1016/j.ecolind.2006.02.005
  3. Uluozlu, O. D.; Tuzen, M.; Mendil, D.; Soylak, M. Food Chemistry 2007, 104(2), 835 https://doi.org/10.1016/j.foodchem.2007.01.003
  4. Celik, U; Oehlenschlager, J. Food Control 2007, 18, 258 https://doi.org/10.1016/j.foodcont.2005.10.004
  5. Samecka-Cymerman, A.; Kempers, A. J. Ecotoxicology and Environmental Safety 2004, 59, 64 https://doi.org/10.1016/j.ecoenv.2003.12.002
  6. Smuda, J.; Dold, B.; Friese, K.; Morgenstern, P.; Glaesser, W. Journal of Geochemical Exploration 2007, 92(2-3), 97 https://doi.org/10.1016/j.gexplo.2006.08.001
  7. Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Advances in Environmental Research 2003, 7(2), 495 https://doi.org/10.1016/S1093-0191(02)00019-9
  8. Divrikli, U.; Kartal, A. A.; Soylak, M.; Elci, L. Journal of Hazardous Materials 2007, 145(3), 459 https://doi.org/10.1016/j.jhazmat.2006.11.040
  9. Venkatesh, G.; Singh, A. K. Talanta 2005, 67(1), 187 https://doi.org/10.1016/j.talanta.2005.02.017
  10. Gurnani, V.; Singh, A. K.; Venkataramani, B. Analytica Chimica Acta 2003, 485(2), 221 https://doi.org/10.1016/S0003-2670(03)00416-1
  11. Matoso, E.; Kubota, L. T.; Cadore, S. Talanta 2003, 60(6), 1105 https://doi.org/10.1016/S0039-9140(03)00215-7
  12. Eskandari, H.; Saghseloo, A. G.; Chamjangali, M. A. Turkey Journal of Chemistry 2006, 30, 49
  13. Khoshayand, M. R.; Abdollahi, H.; Shariatpanahi, M.; Saadatfard, A.; Mohammadi, A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2008, 70(3), 491 https://doi.org/10.1016/j.saa.2007.07.033
  14. Ghavami, R; Najafi, A.; Hemmateenejad, B. Spectrochimica Acta Part A 2008, 70(4), 824 https://doi.org/10.1016/j.saa.2007.09.019
  15. Abdollahi, H.; Zolgharnein, J.; Azimi, G. H.; Jafarifar, D. Talanta 2003, 59(6), 1141 https://doi.org/10.1016/S0039-9140(03)00025-0
  16. Raimundo, Jr. I. M.; Narayanaswamy, R. Sensors and Actuators B 2003, 90, 189 https://doi.org/10.1016/S0925-4005(03)00027-3
  17. Niazi, A.; Yazdanipour, A.; Chinese Chemical Letters 2008, 19, 860 https://doi.org/10.1016/j.cclet.2008.04.047
  18. Moneeb, M. S. Talanta 2006, 70(5), 1035 https://doi.org/10.1016/j.talanta.2006.02.016
  19. Pettas, I. A.; Karayannis, M. I. Analytica Chimica Acta 2003, 491(2), 219 https://doi.org/10.1016/S0003-2670(03)00804-3
  20. Ni, Y.; Chen, S.; Kokot, S. Analytica Chimica Acta 2002, 463(2), 305 https://doi.org/10.1016/S0003-2670(02)00437-3
  21. Goodarzi, M.; Olivieri, A. C.; Freitas, M. P. Spectrochimica Acta Part A 2009, 73(4), 608 https://doi.org/10.1016/j.saa.2009.03.002
  22. Teixeira, L. S. G.; Costa, A. C. S.; Garrigues, S.; de la Guardia, M. Journal of Brazilian Chemical Society 2002, 13(1), 54 https://doi.org/10.1590/S0103-50532002000100008
  23. Lemos, V. A.; Santos, E. S.; Santos, M. S.; Yamaki, R. T. Microchimica Acta 2007, 158, 189 https://doi.org/10.1007/s00604-006-0704-9
  24. Baliza, P. X.; Ferreira, S. L. C.; Teixeira, L. S. G. Talanta 2009, 79(1), 2 https://doi.org/10.1016/j.talanta.2009.02.055
  25. Sanchez Rojas, F.; Bosch Ojeda, C. Analytica Chimica Acta 2009, 635(1), 22 https://doi.org/10.1016/j.aca.2008.12.039
  26. Lee, S. K.; Choi, H. S. Bulletin of Korean Chemical Society 2001, 22(5), 463
  27. Omar, M. M.; Mohamed, G. G. Spectrochimica Acta Part A 2007, 61, 929 https://doi.org/10.1016/j.saa.2004.05.040
  28. Teixeira, L. S. G.; Rocha, F. R. P. Talanta 2007, 71, 1507 https://doi.org/10.1016/j.talanta.2006.07.025
  29. Mehta, S. K.; Malik, A. K.; Gupta, U.; Rao, A. L. J. Electronic Journal of Agricultural Food Chemistry 2004, 3(6), 784
  30. Zaporozhets, O.; Petruniock, N.; Bessarabova, O.; Sukhan, V. Talanta 1999, 49, 899 https://doi.org/10.1016/S0039-9140(99)00085-5
  31. Watanabe, H.; Matsunaga, H.; Japan analyst 1976, 25(1), 35 https://doi.org/10.2116/bunsekikagaku.25.35
  32. Petrucelli, G. A.; Poppi, R. J.; Mincato, R. L.; Pereira-Filho, E. R. Talanta 2007, 71(2), 620 https://doi.org/10.1016/j.talanta.2006.05.008
  33. Collado, M. S.; Mantovani, V. E.; Goicoechea, H. C.; Olivieri, A. C. Talanta 2000, 52(5), 909 https://doi.org/10.1016/S0039-9140(00)00443-4
  34. Ostra, M.; Ubide, C.; Vidal, M.; Zuriarrain, J. Analyst 2008, 133, 532 https://doi.org/10.1039/b716965p
  35. Espinosa-Mansilla, A.; de la Pena, A. M.; Salinas, F.; Gomez, D. G. Talanta 2004, 62, 853 https://doi.org/10.1016/j.talanta.2003.10.037
  36. Marsili, N. R.; Sobrero, M. S.; Goicoechea, H. C. Analytical and Bioanalytical Chemistry 2003, 376, 126 https://doi.org/10.1007/s00216-003-1835-z
  37. Inon, F. A.; Garrigues, J. M.; Garrigues, S.; Molina, A.; de la Guardia, M. Analytica Chimica Acta 2003, 489(1), 59 https://doi.org/10.1016/S0003-2670(03)00711-6
  38. Samadi-Maybodi, A.; Darzi, S. K. H. N. Spectrochimica Acta Part A 2008, 70(5), 1167 https://doi.org/10.1016/j.saa.2007.10.037
  39. Gil Garcia, M. D.; Culzoni, M. J.; De Zan, M. J.; Santiago Valverde, R.; Martinez Galera, M.; Goicoechea, H. C. Journal of Chromatography A 2008, 1179, 115 https://doi.org/10.1016/j.chroma.2007.11.049
  40. Bras, L. P.; Bernardino, S. A.; Lopes, J. A.; Menezes, J. C. Chemometrics and Intelligent Laboratory Systems 2005, 75, 91 https://doi.org/10.1016/j.chemolab.2004.05.007
  41. Goicoechea, H. C.; Olivieri, A. C. Analytical Chemistry 1999, 71(19), 4361 https://doi.org/10.1021/ac990374e
  42. Boquk, R.; Rius, F. X. Chemometrics and Intelligent Laboratory Systems 1996, 32, 11 https://doi.org/10.1016/0169-7439(95)00049-6
  43. Visser, A. E.; Griffin, S. T.; Hartman, D. H.; Rogers, R. D. Journal of Chromatography B 2000, 743, 107 https://doi.org/10.1016/S0378-4347(00)00176-6
  44. Qu, N.; Zhu, M.; Mi, H.; Dou, Y.; Ren, Y. Spectrochimica Acta Part A 2008, 70(5), 1146 https://doi.org/10.1016/j.saa.2007.10.036
  45. Hadad, G. M.; El-Gindy, A.; Mahmoud, W. M. M. Spectrochimica Acta Part A 2008, 70(3), 655 https://doi.org/10.1016/j.saa.2007.08.016
  46. Sxahin, S.; Demir, C.; Gucer, S.Spectrochimica Acta Part A 2007, 73, 368
  47. Jha, S. N.; Chopra, S.; Kingsly, A. R. P. Biosystems Engineering 2005, 91(2), 157 https://doi.org/10.1016/j.biosystemseng.2005.03.007
  48. Lammertyn, J.; Nicolai, B.; Ooms, K.; De Smedt, V.; De Baerdemaeker, J. Transactions of the ASAE 1998, 41, 1089 https://doi.org/10.13031/2013.17238
  49. Rodriguez-Nogales, J. M. Food Chemistry 2006, 98, 782 https://doi.org/10.1016/j.foodchem.2005.07.037
  50. Kuswandi, B.; Narayanaswamy, R. Journal of Environmental Monitoring 1999, 1, 109 https://doi.org/10.1039/a807607c

Cited by

  1. Column solid phase extraction of iron(III), copper(II), manganese(II) and lead(II) ions food and water samples on multi-walled carbon nanotubes vol.48, pp.8-9, 2010, https://doi.org/10.1016/j.fct.2010.05.078
  2. ) with novel thiazolylazo dyes vol.8, pp.29, 2018, https://doi.org/10.1039/C8RA02039F