References
- Matsuhiko, N.; Satoru, Y.; Takashi, I. Chem. Commun.1998, 1631
- Li, W.; Reimers, J. N.; Dhan, J. R. Phys. Rev. 1992, B46, 3236
- Thackeray, M. M.; David, W. I. F.; Bruce, P. G. Mater. Res. Bull. 1983, 18, 461 https://doi.org/10.1016/0025-5408(83)90138-1
- Delmas, C.; Saadoune, I.; Rougier, A. J. Power Sources 1993, 43, 595
- Cho, J.; Park, B. J. Power Sources 2001, 92, 359
- Liu, H.; Li, J.; Zhang, Z. Electrochim. Acta 2004, 49, 1151 https://doi.org/10.1016/j.electacta.2003.11.001
- Kim, J.; Hong, Y.; Ryu, K. S. Electrochem. Solid State Lett. 2006, 9, A19 https://doi.org/10.1149/1.2135427
- Matsumoto, K.; Kuzuo, R.; Takeya, K. J. Power Sources 1999, 81, 558 https://doi.org/10.1016/S0378-7753(99)00216-5
- Chowdari, B. V. R.; Subba Rao, G. V.; Chow, S. Y. Solid State Ionics 2001, 140, 55 https://doi.org/10.1016/S0167-2738(01)00686-5
- Naghash, A. R.; Lee, J. Y. Electrochim. Acta 2001, 46, 2293 https://doi.org/10.1016/S0013-4686(01)00452-2
- Mosqueda, Y.; Perez-Cappe, E.; Arana, J. J. Solid State Chem. 2006, 179, 308 https://doi.org/10.1016/j.jssc.2005.09.030
- Ruiz-Hitzky, E. Adv. Mater. 1993, 5, 334 https://doi.org/10.1002/adma.19930050503
- Gomez-Romeo, P. Adv. Mater. 2001, 13, 163 https://doi.org/10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U
- Tang, B. Z.; Geng, Y.; Lam, J. W. Y. Chem. Mater. 1999, 11, 1581 https://doi.org/10.1021/cm9900305
- Yoneyama, H.; Kuwabata, S. J. Chem. Soc. Chem. Commun. 1991, 986
- Kuwabata, S.; Masui, S.; Tomiyori, H. Electrochim. Acta 2000, 46, 91 https://doi.org/10.1016/S0013-4686(00)00565-X
- MacDiarmid, A. G. Angew. Chem. Int. Ed. 2001, 40, 2581 https://doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
- Pei, Q.; Yu, G.; Zhang, C. Science 1995, 269, 1086 https://doi.org/10.1126/science.269.5227.1086
- Cao, Y.; Smith, P.; Heeger, A. G. US. Pat. 1993, 5232631
- Ramachandran, K.; Christopher, O.; Lerner, M. Mater. Res. Bull. 1996, 31, 767 https://doi.org/10.1016/0025-5408(96)00070-0
- Prevost, V.; Petit, A.; Pla, F. Synth. Met. 1999, 104, 79 https://doi.org/10.1016/S0379-6779(99)00009-0
- Ohuzuku, T.; Ueda, A.; Nagayama, M. J. Electrochem. Soc. 1993, 140, 1862 https://doi.org/10.1149/1.2220730
- Reimers, J. N.; Rosen, E.; Jones, C. D. Solid State Ionics 1993, 61, 335 https://doi.org/10.1016/0167-2738(93)90401-N
- Klong, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Crystalline and Amorphous Materials; Wiley: New York, 1954
- Cho, J.; Park, B. J. Power Sources 2001, 92, 35 https://doi.org/10.1016/S0378-7753(00)00499-7
- Kavan, L.; Gratzel, M. Electrochem. Solid State Lett. 2002, 5, A39 https://doi.org/10.1149/1.1432783
- Chen, C. H.; Liu, J.; Amine, K. J. Power Sources 2001, 96, 321 https://doi.org/10.1016/S0378-7753(00)00666-2
Cited by
- Enhanced cyclic performance of MgF2-coated Li[Ni0.2Li0.2Mn0.6]O2 nanoparticle cathodes in full lithium ion cells vol.33, pp.3-4, 2014, https://doi.org/10.1007/s10832-014-9968-3
- Novel Method to Synthesize Highly Conducting Polyaniline/ Nickel Sulfide Nanocomposite Films and the Study of Their Structural, Magnetic, and Electrical Properties vol.50, pp.8, 2014, https://doi.org/10.1109/TMAG.2014.2320448
- Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer vol.161, pp.1, 2014, https://doi.org/10.1149/2.073401jes
- The effect of molecular structure, band gap energy and morphology on the dc electrical conductivity of polyaniline/aluminium oxide composites vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001688
- NCA cathode material: synthesis methods and performance enhancement efforts vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aae167
- Polymer coating of vanadium oxide nanowires to improve cathodic capacity in lithium batteries vol.1, pp.27, 2009, https://doi.org/10.1039/c3ta11049d
- Surface Surgery of the Nickel-Rich Cathode Material LiNi0.815Co0.15Al0.035O2: Toward a Complete and Ordered Surface Layered Structure and Better Electrochem vol.8, pp.50, 2009, https://doi.org/10.1021/acsami.6b11431
- Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries vol.2019, pp.None, 2009, https://doi.org/10.1155/2019/2730849
- Synthesis of $$\hbox {Li}_{{x}}(\hbox {Ni}_{0.80}\hbox {Co}_{0.15}\hbox {Al}_{0.05})\hbox {O}_{{2}}$$ cathodes with deficient and excess lithium using an ultrasonic sound-assisted co-precipitation met vol.42, pp.5, 2009, https://doi.org/10.1007/s12034-019-1896-z
- Improving the cycling performance of LiNi0.8Co0.15Al0.05O2 cathode materials via zirconium and fluorine co-substitution vol.806, pp.None, 2009, https://doi.org/10.1016/j.jallcom.2019.07.230
- LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과 vol.58, pp.1, 2009, https://doi.org/10.9713/kcer.2020.58.1.52
- Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가 vol.59, pp.1, 2009, https://doi.org/10.9713/kcer.2021.59.1.42
- Prospect of Poly(2-chloroaniline)-Nanocomposite-Silica as Anode in Li-Ion Coin Cell vol.33, pp.11, 2009, https://doi.org/10.14233/ajchem.2021.23371