References
- Katrizky, A. R.; Sommen, G. L.; Gromova, A. V.; Witek, R. M.; Steel, P. J.; Damavarapu, R. Chem. Heterocycl. Comp. 2005, 41, 111 https://doi.org/10.1007/s10593-005-0116-5
- Millar, R. W.; Claridge, J. P.; Sandall, J. P. B.; Thompson, C. Arkivoc. 2002, 3, 19
- Puchala, A.; Belaj, F.; Bergman, J.; Kappe, C. O. J. Heterocycl. Chem. 2001, 38, 1345 https://doi.org/10.1002/jhet.5570380616
- Bellamy, A. J.; Latypov, N. V.; Goede, P. J. Chem. Res. (S) 2002, 257
- Zeng, Z.; Gao, H.; Twamley, B.; Shreev, J. M. J. Mater. Chem. 2007, 17, 3819 https://doi.org/10.1039/b708041g
- Chung, K.-H.; Kil, H.-S.; Choi, I.; Chu, C.-K.; Lee, I.-M. J. Heterocyclic Chem. 2000, 37, 1651 https://doi.org/10.1002/jhet.5570370641
- Zang, M.-X.; Eaton, P. E.; Gilardi, R. Angew. Chem. Int. Ed. 2000, 39, 401 https://doi.org/10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P
- Oh, C. H.; park, D. I.; Ryu, J. H.; Cho, J. H.; Han, J.-S. Bull. Korean Chem. Soc. 2007, 28, 322 https://doi.org/10.5012/bkcs.2007.28.2.322
- Latypov, N. V.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Tetrahedron 1998, 54, 11525 https://doi.org/10.1016/S0040-4020(98)00673-5
- Gao, H.; Ye, C.; Gupta, O. D.; Xiao, J.-C.; Hiskey, M. A.; Twamely, B.; Shreeve, J. M. Chem. Eur. J. 2007, 13, 3853 https://doi.org/10.1002/chem.200601860
- Katritzky, A. R.; Singh, S.; Kirichenko, K.; Smiglak, M.; Holbrey, J. D.; Reichert, W. M.; Spear, S. K.; Roger, R. D. Chem. Eur. J. 2006, 12, 4630 https://doi.org/10.1002/chem.200500840
- Singh, R.; Manjunatha, U.; Bashoff, H. I. M.; Ha, Y. H.; Niyomrattanakit, P.; Ledwidge, R.; Dowd, C. S.; Lee, I. Y.; Kim, P.; Zhang, L.; Kang S.; Keller, T. H.; Jiricek, J.; Barry 3rd, C. E. Science 2008, 322, 1392 https://doi.org/10.1126/science.1164571
- Anniappan, M.; Talwar, G. M.; Venugopalan, S.; Gandhe, B. R. J. Haz. Mater. 2006, 137, 812 https://doi.org/10.1016/j.jhazmat.2006.03.034
- Bulusu, S.; Damavarapu, R.; Autera, J. R.; Behrens, Jr., R.; Minier, L. M.; Villanueva, J.; Jayasuria, K.; Axenrod, T. J. Phy. Chem. 1995, 99, S009
- Minier, L.; Behrens, R.; Bulusu, S. J. Mass Spectrom. 1996, 31, 25 https://doi.org/10.1002/(SICI)1096-9888(199601)31:1<25::AID-JMS252>3.0.CO;2-C
- Bracuti, A. J. J. Chem. Crystallogr. 1995, 25, 625 https://doi.org/10.1007/BF01665967
- Cho, G.; Park, B. S. Propellants Explos. Pyrotech. 1999, 24, 343 https://doi.org/10.1002/(SICI)1521-4087(199912)24:6<343::AID-PREP343>3.0.CO;2-P
- Cho, S. C.; Park, B. S. Int. J. Quantum Chem. 1999, 72, 145 https://doi.org/10.1002/(SICI)1097-461X(1999)72:2<145::AID-QUA7>3.0.CO;2-0
- Rice, B. M.; Hare, J. J. J. Phys. Chem. A 2002, 106, 1770 https://doi.org/10.1021/jp012602q
- Cho, J. R.; Kim, K. J.; Cho, S. G.; Kim, J. K. J. Heterocycl. Chem. 2002, 39, 141 https://doi.org/10.1002/jhet.5570390121
- Cai, H.; Shu, Y.; Huang, H.; Cheng, B.; Li, J. J.Org. Chem. 2004, 69, 4369 https://doi.org/10.1021/jo030395f
- Astrat'ev, A. A.; Dashko, D. V.; Mershin, A. Y.; Stepanov, A. I.; Urazgil'deev, N. A. J. Org. Chem. USSR 2001, 37, 729 https://doi.org/10.1023/A:1012568305472
- Lim, C. H.; Hong, S.; Chung, K.-H.; Kim, J. S.; Cho, J. R. Bull. Korean Chem. Soc. 2008, 29, 1415 https://doi.org/10.5012/bkcs.2008.29.7.1415
- Macco, A. A.; Godefroi, E. F.; Drouen, J. M. J. Org. Chem. 1975, 40, 252 https://doi.org/10.1021/jo00890a024
- Albright, J. D.; Shepherd, R. G. J. Heterocycl. Chem. 1973, 10, 89 https://doi.org/10.1002/jhet.5570100120
- Ramsden, C. A.; Sargent, B. J.; Wallet, C. D. Tetrahedron Lett. 1996, 37, 1901 https://doi.org/10.1016/0040-4039(96)00148-7
- Morrow, N.; Ramsden, C. A.; Sargent, B. J.; Wallet, C. D. Tetrahedron 1998, 54, 9603 https://doi.org/10.1016/S0040-4020(98)00518-3
- Fred, E. J. Org. Chem. 1964, 29, 2021 https://doi.org/10.1021/jo01030a510
- Charles, O. P.; William, D. E.; Henry, A. R.; Keith, S. M. Tetrahedron 1962, 17, 79 https://doi.org/10.1016/S0040-4020(01)99006-4
- Terpigorev, A. N.; Telsinkii, I. V.; Makarevich, A. V.; Frolova, G. M.; Mel'nikov, A. A. Zurnal Organichekoi Khimii. 1987, 23, 214
- Hosmane, R. S. Liebigs Ann. Chem. 1984, 831
- Gruseck, U.; Heuschmann, M. Chem. Ber. 1987, 120, 2053 https://doi.org/10.1002/cber.19871201217
- Butler, R. N. In Comprehensive Heterocyclic Chemistry, 1st ed; Potts, K. T., Ed.; Pergamon Press: Oxford, U. K., 1984; Vol. 5, p 7931
- Baum, K.; Biegelow, S. S.; Nguyen, N. V.; Archibald, T. G. J. Org. Chem. 1992, 57, 235 https://doi.org/10.1021/jo00027a042
Cited by
- ChemInform Abstract: Synthesis and Characterization of Some Polynitro Imidazoles. vol.41, pp.7, 2010, https://doi.org/10.1002/chin.201007107
- Trinitromethyl-Substituted 5-Nitro- or 3-Azo-1,2,4-triazoles: Synthesis, Characterization, and Energetic Properties vol.133, pp.16, 2011, https://doi.org/10.1021/ja2013455
- -1,2,4-triazole vol.133, pp.49, 2011, https://doi.org/10.1021/ja208990z
- -tetrazole and -tetrazolates, Preparation, Characterization, and Conversion into 5-(Dinitromethyl)tetrazoles vol.52, pp.12, 2013, https://doi.org/10.1021/ic400919n
- Theoretical investigation on the structure and performance of N, N′-azobis-polynitrodiazoles vol.20, pp.4, 2014, https://doi.org/10.1007/s00894-014-2155-2
- -Trinitromethyl-Substituted Nitropyrazoles vol.10, pp.9, 2015, https://doi.org/10.1002/asia.201500533
- )-based energetic coordination polymers: synthesis, structure and energy performance vol.39, pp.10, 2015, https://doi.org/10.1039/C5NJ01623A
- ) energetic metal–organic framework assembled with the energetic combination of furazan and tetrazole: synthesis, structure and energetic performance vol.45, pp.16, 2016, https://doi.org/10.1039/C6DT00218H
- The energetic 3-trinitromethyl-5-nitramino-1H-1,2,4-triazole and nitrogen-rich salts vol.41, pp.8, 2017, https://doi.org/10.1039/C7NJ00695K
- Theoretical investigations on 4,4′,5,5′-tetranitro-2,2′-1H,1′H-2,2′-biimidazole derivatives as potential nitrogen-rich high energy materials vol.28, pp.1, 2014, https://doi.org/10.1002/poc.3395
- Energetic Di- and Trinitromethylpyridines: Synthesis and Characterization vol.23, pp.1, 2018, https://doi.org/10.3390/molecules23010002
- Design and Synthesis of Energetic Materials towards Versatile Applications by N-trinitromethyl and N-nitromethyl Functionalization of Nitroimidazoles vol.83, pp.8, 2018, https://doi.org/10.1002/cplu.201800305
- Tris(triazolo)benzene and Its Derivatives: High‐Density Energetic Materials vol.124, pp.39, 2012, https://doi.org/10.1002/ange.201205134
- Tris(triazolo)benzene and Its Derivatives: High‐Density Energetic Materials vol.51, pp.39, 2009, https://doi.org/10.1002/anie.201205134
- [BH3C(NO2)3]−: The First Room‐Temperature Stable (Trinitromethyl)borate vol.125, pp.42, 2009, https://doi.org/10.1002/ange.201305602
- Synthesis of Thermally Stable Energetic 1,2,3‐Triazole Derivatives vol.19, pp.2, 2009, https://doi.org/10.1002/chem.201203192
- [BH3C(NO2)3]−: The First Room‐Temperature Stable (Trinitromethyl)borate vol.52, pp.42, 2013, https://doi.org/10.1002/anie.201305602
- 1,2,3‐Triazolo[4,5,‐e]furazano[3,4,‐b]pyrazine 6‐Oxide—A Fused Heterocycle with a Roving Hydrogen Forms a New Class of Insensitive Energetic Materials vol.20, pp.2, 2009, https://doi.org/10.1002/chem.201303469
- Challenging the Limits of Nitro Groups Associated with a Tetrazole Ring vol.21, pp.12, 2009, https://doi.org/10.1021/acs.orglett.9b01565
- Synthesis and Properties of Energetic Hydrazinium 5-Nitro-3-dinitromethyl-2H-pyrazole by Unexpected Isomerization of N-Nitropyrazole vol.4, pp.21, 2009, https://doi.org/10.1021/acsomega.9b01910