DOI QR코드

DOI QR Code

Room Temperature Chemical Vapor Deposition for Fabrication of Titania Inverse Opals: Fabrication, Morphology Analysis and Optical Characterization

  • Moon, Jun-Hyuk (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Cho, Young-Sang (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yang, Seung-Man (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2009.10.20

Abstract

This paper demonstrates room temperature chemical vapor deposition (RTCVD) for fabricating titania inverse opals. The colloidal crystals of monodisperse polymer latex spheres were used as a sacrificial template. Titania was deposited into the interstices between the colloidal spheres by altermate exposures to water and titanium tetrachloride (Ti$Cl_4$) vapors. The deposition was achieved under atmospheric pressure and at room temperature. Titania inverse opals were obtained by burning out the colloidal template at high temperatures. The filling fraction of titania was controlled by the number of deposition of Ti$Cl_4$ vapor. The morphology of inverse opals of titania were investigated. The optical reflection spectra revealed a photonic band gap and was used to estimate the refractive index of titania.

Keywords

References

  1. Wijnhoven, J.; Vos, W. L. Science 1998, 281, 802. https://doi.org/10.1126/science.281.5378.802
  2. Li, X. J.; Qiao, G. J.; Chen, J. R.; Xi, Z. Prog. Chem. 2008, 20, 491.
  3. Kim, I. D.; Rothschild, A.; Yang, D. J.; Tuller, H. L. Sensor Actuat. A-Phys. 2008, 130, 9. https://doi.org/10.1016/j.snb.2007.07.092
  4. Lai, Y. K.; Lin, C. J.; Huang, J. Y.; Zhuang, H. F.; Sun, L.; Nguyen, T. Langmuir 2008, 24, 3867. https://doi.org/10.1021/la7031863
  5. Mihi, A.; Calvo, M. E.; Anta, J. A.; Miguez, H. J. Phys. Chem. C 2008, 112, 13. https://doi.org/10.1021/jp7105633
  6. Rodriguez, I.; Atienzar, P.; Ramiro-Manzano, F.; Meseguer, F.; Corma, A.; Garcia, H. Photonic. Nanostruct. 2005, 3, 148. https://doi.org/10.1016/j.photonics.2005.09.009
  7. Chen, J. I. L.; von Freymann, G.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2007, 129, 1196. https://doi.org/10.1021/ja066102s
  8. Li, Y. Z.; Kunitake, T.; Fujikawa, S. J. Phys. Chem. B 2006, 110, 13000. https://doi.org/10.1021/jp061979z
  9. Therriault, D.; Shepherd, R. F.; White, S. R.; Lewis, J. A. Adv. Mater. 2005, 17, 395. https://doi.org/10.1002/adma.200400481
  10. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G.; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538. https://doi.org/10.1038/nature02575
  11. Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Nature 2000, 404, 53. https://doi.org/10.1038/35003523
  12. Subramanian, G.; Manoharan, V. N.; Thorne, J. D.; Pine, D. J. Adv. Mater. 1999, 11, 1261. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1261::AID-ADMA1261>3.0.CO;2-A
  13. Jiang, P.; Ostojic, G. N.; Narat, R.; Mittleman, D. M.; Colvin, V. L. Adv. Mater. 2001, 13, 389. https://doi.org/10.1002/1521-4095(200103)13:6<389::AID-ADMA389>3.0.CO;2-L
  14. Dong, W. T.; Bongard, H.; Tesche, B.; Marlow, F. Adv. Mater. 2002, 14, 1457. https://doi.org/10.1002/1521-4095(20021016)14:20<1457::AID-ADMA1457>3.0.CO;2-P
  15. Holland, B. T.; Blanford, C. F.; Do, T.; Stein, A. Chem. Mater. 1999, 11, 795. https://doi.org/10.1021/cm980666g
  16. Richel, A.; Johnson, N. P.; McComb, D. W. Appl. Phys. Lett. 2000, 76, 1816. https://doi.org/10.1063/1.126175
  17. Wijnhoven, J.; Bechger, L.; Vos, W. L. Chem. Mater. 2001, 13, 4486. https://doi.org/10.1021/cm0111581
  18. Gu, Z. Z.; Kubo, S.; Qian, W. P.; Einaga, Y.; Tryk, D. A.; Fujishima, A.; Sato, O. Langmuir 2001, 17, 6751. https://doi.org/10.1021/la0110186
  19. Strohm, H.; Lobmann, P. J. Mater. Chem. 2004, 14, 138. https://doi.org/10.1039/b313584e
  20. King, J. S.; Graugnard, E.; Summers, C. J. Adv. Mater. 2005, 17, 1010. https://doi.org/10.1002/adma.200400648
  21. Gates, B.; Park, S. H.; Xia, Y. N. Adv. Mater. 2000, 12, 653. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<653::AID-ADMA653>3.0.CO;2-3
  22. von Freymann, G.; John, S.; Kitaev, V.; Ozin, G. A. Adv. Mater. 2005, 17, 1273. https://doi.org/10.1002/adma.200402082
  23. Pizem, H.; Sukenik, C. N. Chem. Mater. 2002, 14, 2476. https://doi.org/10.1021/cm010776e
  24. Hayashi, S.; Hirai, T. J. Cryst. Growth 1976, 36, 157. https://doi.org/10.1016/0022-0248(76)90228-1
  25. Yeung, K. S.; Lam, Y. W. Thin Solid Films 1983, 109, 169. https://doi.org/10.1016/0040-6090(83)90136-0
  26. Bechger, L.; Vos, W. L. Chem. Mater. 2004, 16, 2425 https://doi.org/10.1021/cm035373o
  27. Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A. Chem. Mater. 2002, 14, 3305. https://doi.org/10.1021/cm020100z
  28. Dong, W. T.; Bongard, H. J.; Marlow, F. Chem. Mater. 2003, 15, 568. https://doi.org/10.1021/cm021299i
  29. Manoharan, V. N.; Imhof, A.; Thorne, J. D.; Pine, D. J. Adv. Mater. 2001, 13, 447. https://doi.org/10.1002/1521-4095(200103)13:6<447::AID-ADMA447>3.0.CO;2-4
  30. Miguez, H.; Tetreault, N.; Yang, S. M.; Kitaev, V.; Ozin, G. A. Adv. Mater. 2003, 15, 597. https://doi.org/10.1002/adma.200304043
  31. Galisteo-Lopez, J. F.; Palacios-Lidon, E.; Castillo-Martinez, E.; Lopez, C. Phys. Rev. B 2003, 68, 115109. https://doi.org/10.1103/PhysRevB.68.115109

Cited by

  1. Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors vol.18, pp.4, 2011, https://doi.org/10.4150/KPMI.2011.18.4.347
  2. Hybrid material based on ST–AA photonic crystal core and ZnO particle shell vol.290, pp.18, 2012, https://doi.org/10.1007/s00396-012-2795-7
  3. Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.159
  4. Fabrication of superhydrophobic surfaces using structured colloids vol.30, pp.5, 2013, https://doi.org/10.1007/s11814-013-0031-x
  5. Bottom-Up Assembly and Applications of Photonic Materials vol.6, pp.5, 2016, https://doi.org/10.3390/cryst6050054
  6. Slow Photons for Photocatalysis and Photovoltaics vol.29, pp.17, 2017, https://doi.org/10.1002/adma.201605349
  7. Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals vol.32, pp.7, 2009, https://doi.org/10.5012/bkcs.2011.32.7.2178
  8. Morphology- and Crystalline Composition-Governed Activity of Titania-Based Photocatalysts: Overview and Perspective vol.9, pp.12, 2009, https://doi.org/10.3390/catal9121054
  9. Photonic Crystals for Plasmonic Photocatalysis vol.10, pp.8, 2009, https://doi.org/10.3390/catal10080827
  10. Recent Advances in Preparation and Applications of 3D Transition Metal Oxides Semiconductor Photonic Crystal vol.2, pp.11, 2021, https://doi.org/10.1002/adpr.202000191