References
- Wijnhoven, J.; Vos, W. L. Science 1998, 281, 802. https://doi.org/10.1126/science.281.5378.802
- Li, X. J.; Qiao, G. J.; Chen, J. R.; Xi, Z. Prog. Chem. 2008, 20, 491.
- Kim, I. D.; Rothschild, A.; Yang, D. J.; Tuller, H. L. Sensor Actuat. A-Phys. 2008, 130, 9. https://doi.org/10.1016/j.snb.2007.07.092
- Lai, Y. K.; Lin, C. J.; Huang, J. Y.; Zhuang, H. F.; Sun, L.; Nguyen, T. Langmuir 2008, 24, 3867. https://doi.org/10.1021/la7031863
- Mihi, A.; Calvo, M. E.; Anta, J. A.; Miguez, H. J. Phys. Chem. C 2008, 112, 13. https://doi.org/10.1021/jp7105633
- Rodriguez, I.; Atienzar, P.; Ramiro-Manzano, F.; Meseguer, F.; Corma, A.; Garcia, H. Photonic. Nanostruct. 2005, 3, 148. https://doi.org/10.1016/j.photonics.2005.09.009
- Chen, J. I. L.; von Freymann, G.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2007, 129, 1196. https://doi.org/10.1021/ja066102s
- Li, Y. Z.; Kunitake, T.; Fujikawa, S. J. Phys. Chem. B 2006, 110, 13000. https://doi.org/10.1021/jp061979z
- Therriault, D.; Shepherd, R. F.; White, S. R.; Lewis, J. A. Adv. Mater. 2005, 17, 395. https://doi.org/10.1002/adma.200400481
- Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G.; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538. https://doi.org/10.1038/nature02575
- Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Nature 2000, 404, 53. https://doi.org/10.1038/35003523
- Subramanian, G.; Manoharan, V. N.; Thorne, J. D.; Pine, D. J. Adv. Mater. 1999, 11, 1261. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1261::AID-ADMA1261>3.0.CO;2-A
- Jiang, P.; Ostojic, G. N.; Narat, R.; Mittleman, D. M.; Colvin, V. L. Adv. Mater. 2001, 13, 389. https://doi.org/10.1002/1521-4095(200103)13:6<389::AID-ADMA389>3.0.CO;2-L
- Dong, W. T.; Bongard, H.; Tesche, B.; Marlow, F. Adv. Mater. 2002, 14, 1457. https://doi.org/10.1002/1521-4095(20021016)14:20<1457::AID-ADMA1457>3.0.CO;2-P
- Holland, B. T.; Blanford, C. F.; Do, T.; Stein, A. Chem. Mater. 1999, 11, 795. https://doi.org/10.1021/cm980666g
- Richel, A.; Johnson, N. P.; McComb, D. W. Appl. Phys. Lett. 2000, 76, 1816. https://doi.org/10.1063/1.126175
- Wijnhoven, J.; Bechger, L.; Vos, W. L. Chem. Mater. 2001, 13, 4486. https://doi.org/10.1021/cm0111581
- Gu, Z. Z.; Kubo, S.; Qian, W. P.; Einaga, Y.; Tryk, D. A.; Fujishima, A.; Sato, O. Langmuir 2001, 17, 6751. https://doi.org/10.1021/la0110186
- Strohm, H.; Lobmann, P. J. Mater. Chem. 2004, 14, 138. https://doi.org/10.1039/b313584e
- King, J. S.; Graugnard, E.; Summers, C. J. Adv. Mater. 2005, 17, 1010. https://doi.org/10.1002/adma.200400648
- Gates, B.; Park, S. H.; Xia, Y. N. Adv. Mater. 2000, 12, 653. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<653::AID-ADMA653>3.0.CO;2-3
- von Freymann, G.; John, S.; Kitaev, V.; Ozin, G. A. Adv. Mater. 2005, 17, 1273. https://doi.org/10.1002/adma.200402082
- Pizem, H.; Sukenik, C. N. Chem. Mater. 2002, 14, 2476. https://doi.org/10.1021/cm010776e
- Hayashi, S.; Hirai, T. J. Cryst. Growth 1976, 36, 157. https://doi.org/10.1016/0022-0248(76)90228-1
- Yeung, K. S.; Lam, Y. W. Thin Solid Films 1983, 109, 169. https://doi.org/10.1016/0040-6090(83)90136-0
- Bechger, L.; Vos, W. L. Chem. Mater. 2004, 16, 2425 https://doi.org/10.1021/cm035373o
- Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A. Chem. Mater. 2002, 14, 3305. https://doi.org/10.1021/cm020100z
- Dong, W. T.; Bongard, H. J.; Marlow, F. Chem. Mater. 2003, 15, 568. https://doi.org/10.1021/cm021299i
- Manoharan, V. N.; Imhof, A.; Thorne, J. D.; Pine, D. J. Adv. Mater. 2001, 13, 447. https://doi.org/10.1002/1521-4095(200103)13:6<447::AID-ADMA447>3.0.CO;2-4
- Miguez, H.; Tetreault, N.; Yang, S. M.; Kitaev, V.; Ozin, G. A. Adv. Mater. 2003, 15, 597. https://doi.org/10.1002/adma.200304043
- Galisteo-Lopez, J. F.; Palacios-Lidon, E.; Castillo-Martinez, E.; Lopez, C. Phys. Rev. B 2003, 68, 115109. https://doi.org/10.1103/PhysRevB.68.115109
Cited by
- Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors vol.18, pp.4, 2011, https://doi.org/10.4150/KPMI.2011.18.4.347
- Hybrid material based on ST–AA photonic crystal core and ZnO particle shell vol.290, pp.18, 2012, https://doi.org/10.1007/s00396-012-2795-7
- Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.159
- Fabrication of superhydrophobic surfaces using structured colloids vol.30, pp.5, 2013, https://doi.org/10.1007/s11814-013-0031-x
- Bottom-Up Assembly and Applications of Photonic Materials vol.6, pp.5, 2016, https://doi.org/10.3390/cryst6050054
- Slow Photons for Photocatalysis and Photovoltaics vol.29, pp.17, 2017, https://doi.org/10.1002/adma.201605349
- Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals vol.32, pp.7, 2009, https://doi.org/10.5012/bkcs.2011.32.7.2178
- Morphology- and Crystalline Composition-Governed Activity of Titania-Based Photocatalysts: Overview and Perspective vol.9, pp.12, 2009, https://doi.org/10.3390/catal9121054
- Photonic Crystals for Plasmonic Photocatalysis vol.10, pp.8, 2009, https://doi.org/10.3390/catal10080827
- Recent Advances in Preparation and Applications of 3D Transition Metal Oxides Semiconductor Photonic Crystal vol.2, pp.11, 2021, https://doi.org/10.1002/adpr.202000191