DOI QR코드

DOI QR Code

Interaction of ct-DNA with 2,4-Dihydroxy Salophen

  • Azani, Mohammad-Reza (Laboratory of Biophysical Chemistry, Department of Chemistry, University of Isfahan) ;
  • Hassanpour, Azin (Laboratory of Biophysical Chemistry, Department of Chemistry, University of Isfahan) ;
  • Bordbar, Abdol-Khalegh (Laboratory of Biophysical Chemistry, Department of Chemistry, University of Isfahan) ;
  • Mirkhani, Valiollah (Laboratory of Biophysical Chemistry, Department of Chemistry, University of Isfahan)
  • Published : 2009.09.20

Abstract

In the present study, at first, 2,4-Dihydroxy Salophen (2,4-DHS), has been synthesized by combination of 1, 2-diaminobenzene and 2,4-dihydroxybenzaldehyde in a solvent system. This ligand containing meta-quinone functional groups were characterized using UV-Vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and 2,4-DHS, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of 2,4-DHS with ct-DNA was found to be (1.1 ${\pm}\;0.2)\;{\times}\;10^4\;M^{-1}.$ The fluorescence study represents the quenching effect of 2,4-DHS on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of 2,4-DHS concentration. Thermal denaturation experiments represent the increasing of melting temperature of DNA (about 3.5 ${^{\circ}C}$) due to binding of 2,4-DHS. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.

Keywords

References

  1. Beottcher, A.; Grinstaff, M.; Labinger, J. A.; Gray, H. B. J. Mol. Catal. A. Chem. 1996, 113, 191 https://doi.org/10.1016/S1381-1169(96)00053-2
  2. Liou, Y. W.; Wang, C. M. J. Electroanal. Chem. 2000, 481, 102 https://doi.org/10.1016/S0022-0728(99)00496-9
  3. Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem. Rev. 1999, 99, 2777 https://doi.org/10.1021/cr9804341
  4. Metcalfe, C.; Thomas, J. A. Chem. Soc. Rev. 2003, 32, 215 https://doi.org/10.1039/b201945k
  5. Liu, G. D.; Yang, X.; Chen, Z. P.; Shen, G. L.; Yu, R. Q. Anal. Sci. 2000, 16, 1255 https://doi.org/10.2116/analsci.16.1255
  6. Routier, S.; Bernier, J. L.; Waring, M. J.; Colson, P.; Houssier, C.; Bailly, C. J. Org. Chem. 1996, 61, 2326 https://doi.org/10.1021/jo951840c
  7. Burrows, C. J.; Rokita, S. E. Acc. Chem. Res. 1994, 27, 295 https://doi.org/10.1021/ar00046a002
  8. Burrows, C. J.; Rokita, S. E.; Sigel, A.; Sigel, H. Metal Ions in Biologic. Sys. 1996, 33, 537
  9. Muller, J. G.; Kayser, L. A.; Paikoff, S. J.; Duarte, V.; Tang, N.; Perez, R. J.; Rokita, S. E.; Burrows, C. J. Coord. Chem. Rev. 1999, 185, 761 https://doi.org/10.1016/S0010-8545(99)00043-0
  10. Gravert, D. J.; Griffin, J. H. Inorg. Chem. 1996, 35, 4837 https://doi.org/10.1021/ic960196x
  11. Gravert, D. J.; Griffin, J. H.; Sigel, A.; Sigel, H. Metal Ions in Biologic. Sys. 1996, 33, 515
  12. Bhattacharya, S.; Mandal, S. J. Chem. Soc. 1995, 2489
  13. Cheng, C.; Lu, Y. J. Chin. Chem. Soc. 1998, 45, 611
  14. Marmur, J. J. Mol. Biol. 1961, 3, 208 https://doi.org/10.1016/S0022-2836(61)80047-8
  15. Doty, P.; Rice, S. A. Biochim. Biophys. Acta 1955, 16, 446
  16. Bailes, R. H.; Calvin, M. J. Am. Chem. Soc. 1947, 69, 1886 https://doi.org/10.1021/ja01200a013
  17. Banville, D. L.: Marzilli, L. G.; Strickland, J. A.; Wilson, W. D. J. Biopolymers 1986, 25, 1837 https://doi.org/10.1002/bip.360251003
  18. Gray, T. A.; Yue, K. T.; Marzilli, L. G. J. Inorg. Biochem. 1991, 41, 205 https://doi.org/10.1016/0162-0134(91)80013-8
  19. Meehan, T.; Gamper, H.; Becker, J. F. J. Biol. Chem. 1982, 257, 10479
  20. Silvestri, A.; Barone, G.; Ruisi, G.; Giudice, M. T. L.; Tumminello, S. J. Inorg. Biochem. 2004, 98, 589 https://doi.org/10.1016/j.jinorgbio.2004.01.010
  21. Baguley, B. C.; LeBret, M. Biochemistry 1984, 23, 937 https://doi.org/10.1021/bi00300a022
  22. Lakowicz, J. R.; Webber, G. Biochemistry 1973, 12, 4161 https://doi.org/10.1021/bi00745a020
  23. Cramb, D. T.; Beck, S. C. J. Photochem. Photobiol. A 2000, 134, 87 https://doi.org/10.1016/S1010-6030(00)00249-5
  24. Kang, J.; Wu, H.; Lu, X.; Wang, Y.; Zhou, L. Spectrochimica Acta Part A 2005, 61, 2041 https://doi.org/10.1016/j.saa.2004.08.009
  25. Kuswandi, B.; Tombelli, S.; Marazza, G.; Mascini, M. Chimia 2005, 59, 236 https://doi.org/10.2533/000942905777676597
  26. Wu, H. L.; Li, W.; Miao, K.; He, X.; Liang, H. Spectrosc. Lett. 2002, 35, 781 https://doi.org/10.1081/SL-120016280
  27. Nair, R. B.; Teng, E. S.; Kirkland, S. L.; Murphy, C. J. Inorg. Chem. 1998, 37, 139 https://doi.org/10.1021/ic970432j
  28. Cory, M.; Mckee, D.; Kagan, J.; Henry, D.; Miller, J. J. Am. Chem. Soc. 1985, 107, 2528 https://doi.org/10.1021/ja00294a054
  29. Waring, M. J. Mol. Biol. 1965, 13, 269 https://doi.org/10.1016/S0022-2836(65)80096-1

Cited by

  1. Synthesis, characterization, DNA interaction and cleavage, and in vitro cytotoxicity of copper(ii) mixed-ligand complexes with 2-phenyl-3-hydroxy-4(1H)-quinolinone vol.40, pp.37, 2011, https://doi.org/10.1039/c1dt10674k
  2. Structural revisions of small molecules reported to cross-link G-quadruplex DNA in vivo reveal a repetitive assignment error in the literature vol.6, pp.1, 2016, https://doi.org/10.1038/srep23499
  3. Reversible DNA compaction induced by partial intercalation of 16-Ph-16 gemini surfactants: evidence of triple helix formation vol.20, pp.38, 2018, https://doi.org/10.1039/C8CP02791A
  4. Study of Interaction of Native DNA with Iron(III)-(2,4-Dihydroxysalophen)chloride vol.54, pp.5, 2010, https://doi.org/10.5012/jkcs.2010.54.5.573
  5. Mutagenic Analysis of hPNMT Confirms the Importance of Lys57 and the Inhibitor Binding Site vol.32, pp.2, 2009, https://doi.org/10.5012/bkcs.2011.32.2.455
  6. Development of New Fluorescent Dyes by Using Amine Modified Nanoparticles for Immunostaining vol.46, pp.12, 2016, https://doi.org/10.1080/15533174.2015.1137062