DOI QR코드

DOI QR Code

A Systematic NMR Determination of α-D-Glucooligosaccharides, Effect of Linkage Type, Anomeric Configuration and Combination of Different Linkages Type on 13C Chemical Shifts for the Determination of Unknown Isomaltooligosaccharides

  • Goffin, Dorothee (Unité de Chimie Biologique Industrielle, Unité de Technologie des Industries Agro-alimentaires) ;
  • Bystricky, Peter (Centre for BioAnalytical Sciences, Department of Chemistry, National University of Ireland, Galway, University Road) ;
  • Shashkov, Alexander S. (N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences) ;
  • Lynch, Mary (Centre for BioAnalytical Sciences, Department of Chemistry, National University of Ireland, Galway, University Road) ;
  • Hanon, Emilien (Faculté Universitaire des Sciences Agronomiques de Gembloux, Unité de Chimie Générale et Organique) ;
  • Paquot, Michel (Faculté Universitaire des Sciences Agronomiques de Gembloux, Unité de Chimie Biologique Industrielle) ;
  • Savage, Angela V. (Centre for BioAnalytical Sciences, Department of Chemistry, National University of Ireland, Galway, University Road)
  • Published : 2009.11.20

Abstract

Prebiotic isomaltooligosaccharide preparations contain $\alpha$-D-glucooligosaccharides comprising isomaltooligosaccharides (IMOs) and non-prebiotic maltooligosaccharides (MOs). They are both glucose oligosaccharides characterized by their degree of polymerization (DP) value (from 2 to $\sim$10), linkages types and positions (IMOs: $\alpha$-(1$\rightarrow$2, 3, 6 and in a lower proportion internal 1$\rightarrow$4) linkages, MOs: α-(1$\rightarrow$4) linkages). Their structure is the key factor for their prebiotic potential. In order to determine and elucidate the exact structure of unknown IMOs and MOs, unambiguous assignments of $^{13}C$ and $^1H$ chemical shifts of commercial standards, representative of IMOs and MOs diversity, have been determined using optimized standard one and two-dimensional experiments such as $^1H$ NMR, $^{13}C$ NMR, APT and ${^1}H-{^1}H$ COSY, TOCSY, NOESY and <$^1H-{^{13}}C$ heteronuclear HSQC, HSQC-TOCSY, and HMBC. Here we point out the differential effect of substitution by a glucose residue at different positions on chemical shifts of anomeric as well as ring carbons together with the effect of the reducing end configuration for low DP oligosaccharides and diasteroisotopic effect for H-6 protons. From this study, structural $^{13}C$ specific spectral features can be identified as tools for structural analysis of isomaltooligosaccharides.

Keywords

References

  1. Gu, Q.; Yang, Y.; Jiang, G.; Chang, G. J. Hyg. Res. 2003, 32, 54-55
  2. Kaneko, T.; Yokoyama, A.; Suzuki, M. Biosci. Biotechnol. Biochem. 1995, 59, 1190-1194 https://doi.org/10.1271/bbb.59.1190
  3. Kohmoto, T.; Fukui, F.; Takaku, H.; Machida, Y.; Arai, M.; Mitsuoka, T. Bifidobacteria Microflora 1988, 7, 61-69 https://doi.org/10.12938/bifidus1982.7.2_61
  4. Rycroft, C.; Jones, M.; Gibson, G.; Rastall, R. J. Appl. Microbiol. 2001, 91, 878-887 https://doi.org/10.1046/j.1365-2672.2001.01446.x
  5. Sanz, M.; Gibson, G.; Rastall, R. J. Agric. Food Chem. 2005, 53, 5192-5199 https://doi.org/10.1021/jf050276w
  6. Delzenne, N.; Williams, C. Curr. Opin. Lipidol. 2002, 13, 61-67 https://doi.org/10.1097/00041433-200202000-00009
  7. Pazur, J.; French, D. J. Biol. Chem. 1951, 2020, 265-272
  8. Wang, X.; Rakshit, S. Process Biochem. 2000, 35, 771-775 https://doi.org/10.1016/S0032-9592(99)00139-9
  9. Kato, N.; Suyama, S.; Shirokane, M.; Kato, M.; Kobayashi, T.; Tsukagoshi, N. Appl. Environ. Microbiol. 2002, 68, 1250-256 https://doi.org/10.1128/AEM.68.3.1250-1256.2002
  10. Yun, J.; Lee, M.; Song, S. Biotechnol. Lett. 1994, 16, 1145-1150 https://doi.org/10.1007/BF01020841
  11. Kuriki, T.; Yanase, M.; Takata, H.; Takesada, Y.; Imanaka, T.; Okada, S. Appl. Environ. Microbiol. 1993, 59, 953-959
  12. McCleary, B.; Gibson, T. Carbohydr. Res. 1989, 185, 147-162 https://doi.org/10.1016/0008-6215(89)84030-3
  13. Chen, W.; Hung, T.; Lee, S. Biotechnol. Lett. 1997, 19, 949-951 https://doi.org/10.1023/A:1018374612403
  14. van Leeuwen, S. S.; Leeflang, B. R.; Gerwig, G. J.; Kamerling, J. P. Carbohydr. Res. 2008, 343, 1114-1119 https://doi.org/10.1016/j.carres.2008.01.043
  15. Yoon, E. Y. Bull. Korean Chem. Soc. 2003, 24, 339-344 https://doi.org/10.5012/bkcs.2003.24.3.339
  16. Edward, J. T. Chem. Ind. (London) 1955, 1102-1104
  17. Perlin, A. S.; Casu, B.; Koch, H. J. Can. J. Chem. 1970, 48, 2596-2606 https://doi.org/10.1139/v70-435
  18. Fukushi, E. Biosci. Biotechnol. Biochem. 2006, 70,1803-1812 https://doi.org/10.1271/bbb.50663
  19. Bax A.; Summers, M. F.; J. Am. Chem. Soc. 1986, 108, 2093-2094 https://doi.org/10.1021/ja00268a061
  20. Summers, M. F.; Marzilli, L. G.; Bax, A. J. Am. Chem. Soc. 1986, 108, 4285-4294 https://doi.org/10.1021/ja00275a008
  21. Takahashi, S.; Nagayama, K. J. Magn. Reson. 1988, 76, 347-351
  22. Gorin, P. A. J. Carbohydr. Res. 1975, 39, 3-10 https://doi.org/10.1016/S0008-6215(00)82631-2
  23. Usui, T.; Yokoyama, M.; Yamaoka, M.; Matsuda, K.; Tuzimura, K. Carbohydr. Res. 1974, 33, 105-116 https://doi.org/10.1016/S0008-6215(00)82944-4
  24. Delben, F.; Forabosco, A.; Guerrini, M.; Liut, G.; Torri, G. Carbohydr. Pol. 2006, 63, 545-554 https://doi.org/10.1016/j.carbpol.2005.11.012
  25. Bock, K.; Pedersen, C. Adv. Carbohydr. Chem. Biochem. 1983, 41, 27-66 https://doi.org/10.1016/S0065-2318(08)60055-4
  26. Bock, K.; Th$\phi$gersen, H. Ann. Rep. NMR Spectrosc. 1982, 13, 2-57
  27. Backman, I.; Erbing, B.; Jansson, P.-E.; Kenne, L. J. Chem. Soc., Perkin Trans. 1 1988, 889-898
  28. Jansson, P.-E.; Kenne, L.; Schweda, F. J. Chem. Soc. Perkin Trans. 1 1988, 2729-2736
  29. Adeyeye, A.; Jansson, P.-E.; Kenne, L.; Widmalm, G. J. Chem. Soc. Perkin Trans. 2 1991, 963-973
  30. Jansson, P.-E.; Kenne, L.; Kolare, I. Carbohydr. Res. 1994, 257, 163-176 https://doi.org/10.1016/0008-6215(94)80033-2
  31. Deshmukh, M. M.; Bartolotti, L. J.; Gadre, S. R. J. Phys. Chem. A 2008, 112, 312-321 https://doi.org/10.1021/jp076316b
  32. Grant, D. M.; Cheney, B. V. J. Am. Chem. Soc. 1967, 89, 5315-5318 https://doi.org/10.1021/ja00997a001
  33. Cheney, B. V. J. Am. Chem. Soc. 1968, 90, 5386-5390 https://doi.org/10.1021/ja01022a009
  34. Buchanan, G. W.; Stothers, B.; Wu, S. Can. J. Chem. 1969, 47, 3113-3118 https://doi.org/10.1139/v69-515
  35. Lauterbur, P. C. J. Am. Chem. Soc. 1961, 83, 1838-1846 https://doi.org/10.1021/ja01469a017
  36. Stothers, J. B. Quart. Rev. 1965, 19, 144 https://doi.org/10.1039/qr9651900144
  37. Lipkind, G. M.; Shashkov, A. S.; Knirel, Y. A.; Vinogradov, E. V.; Kochetkov, N. K. Carbohydr. Res. 1988, 175, 59-75 https://doi.org/10.1016/0008-6215(88)80156-3
  38. Lopez de la Paz, M.; Ellis, G.; Perez, M.; Perkins, J.; Jimenez-Barbero, J.; Vicent, C. Eur. J. Org. Chem. 2002, 840-855
  39. Pereira, C. S.; Kony, D.; Baron, R.; Muller, M.; van Gunsteren, W. F.; Hunenberger, P. H. Biophysical Journal 2006, 90, 4337-4344 https://doi.org/10.1529/biophysj.106.081539
  40. Dowd, M. K.; Zeng, J.; French, A. D.; Reilly, P. J. Carbohydr. Res. 1992, 230, 223-244 https://doi.org/10.1016/0008-6215(92)84035-Q
  41. Christofides, J. C.; Davies, D. B. J. Am. Chem. Soc. 1983, 105(15), 5099-5105 https://doi.org/10.1021/ja00353a040
  42. Best, R. B.; Jackson, G. E.; Naidoo, K. J. J. Phys. Chem. B 2001, 105, 4742-4751 https://doi.org/10.1021/jp0040704

Cited by

  1. Will Isomalto-Oligosaccharides, a Well-Established Functional Food in Asia, Break through the European and American Market? The Status of Knowledge on these Prebiotics vol.51, pp.5, 2011, https://doi.org/10.1080/10408391003628955
  2. Fast and Accurate Quantitation of Glucans in Complex Mixtures by Optimized Heteronuclear NMR Spectroscopy vol.85, pp.18, 2013, https://doi.org/10.1021/ac401980m
  3. Carbohydrate Structure Generalization Scheme for Database-Driven Simulation of Experimental Observables, Such as NMR Chemical Shifts vol.54, pp.9, 2014, https://doi.org/10.1021/ci500267u
  4. C NMR spectroscopy vol.7, pp.14, 2015, https://doi.org/10.1039/C5AY01243K
  5. Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity vol.52, pp.25, 2016, https://doi.org/10.1039/C6CC00934D
  6. Alpha-glucosidase inhibitory activity and phytochemical investigation of Borassus flabellifer Linn. vol.11, pp.3, 2017, https://doi.org/10.5897/AJPP2016.4706
  7. Protective Constituents against Sepsis in Mice from the Root Barks of Ulmus davidiana var. japonica vol.34, pp.9, 2009, https://doi.org/10.1007/s12272-011-0905-6
  8. A novel amino-oligosaccharide isolated from the culture of Streptomyces strain PW638 is a potent inhibitor of α-amylase vol.346, pp.13, 2009, https://doi.org/10.1016/j.carres.2011.06.005
  9. Rational design of an improved transglucosylase for production of the rare sugar nigerose vol.55, pp.31, 2009, https://doi.org/10.1039/c9cc01587f