References
- Gutierrez, L. L. P.; Maslinkiewicz, A.; Curi, R.; de Bittencourt Jr., P. I. H. Biochem. Phamacol. 2008, 75, 2245. https://doi.org/10.1016/j.bcp.2008.03.002
- Csaky, A. G.; Mba, M.; Plumet, J. Tetrahedron: Asymmetry 2004, 15, 647. https://doi.org/10.1016/j.tetasy.2004.01.008
- Conti, M. Anti-Cancer Drugs 2006, 17, 1017. https://doi.org/10.1097/01.cad.0000231471.54288.00
- Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, D. Experientia 1989, 45, 209. https://doi.org/10.1007/BF01954881
- Amagata, T.; Usami, Y.; Minoura, K.; Ito, T.; Numata, A. J. Antibiot. 1998, 51, 33. https://doi.org/10.7164/antibiotics.51.33
- Usami, Y.; Numata, A. Synlett. 1999, No. 6, 723.
- Weidler, M.; Rether, J.; Anke, T.; Erkel, G. Biochem. Biophys. Res. Commun. 2000, 276, 447. https://doi.org/10.1006/bbrc.2000.3499
- Lin, W.; Li, L.; Fu, H.; Sattler, I.; Huang, X.; Grabley, S. J. Antibiot. 2005, 58, 594. https://doi.org/10.1038/ja.2005.81
- Chomcheon, P.; Sriubolmas, N.; Wiyakrutta, S.; Ngamrojanavanich, N.; Chaichit, N.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. J. Nat. Prod. 2006, 69, 1351. https://doi.org/10.1021/np060148h
- Weidler, M.; Rether, J.; Anke, T.; Erkel, G.; Sterner, D. J. Antibiot 2001, 54, 679. https://doi.org/10.7164/antibiotics.54.679
- Bickley, J. F.; Roberts, S. M.; Santoro, M. G.; Snape, T. J. Tetrahedron 2004, 60, 2569. https://doi.org/10.1016/j.tet.2004.01.045
- Mikolajczyk, M.; Mikina, M.; Wieczorek, M. W.; Blaszczyk, J. Angew. Chem. Int. E. Engl. 1996, 35, 1560. https://doi.org/10.1002/anie.199615601
- Malmstrom, J.; Christophersen, C.; Barero, A. F.; Oltra, J. E.; Justicia, J.; Rosales, A. J. Nat. Prod. 2002, 65, 364. https://doi.org/10.1021/np0103214
- Lee, S.; Kim, W.-G.; Kim, E.; Ryoo, I.-J.; Lee, H. K.; Kim, J. N.; Jung, S.-H.; Yoo, I.-D. Bioorg. Med. Chem. Lett. 2005, 15, 471. https://doi.org/10.1016/j.bmcl.2004.10.057
- Lubken, T.; Schmidt, J.; Porzel, A.; Arnold, N.; Wessjohann, L. Phytochemistry 2004, 65, 1061. https://doi.org/10.1016/j.phytochem.2004.01.023
- Sassa, T.; Ooi, T.; Kinoshita, H. Biosci. Biotechnol. Biochem. 2004, 68, 2633. https://doi.org/10.1271/bbb.68.2633
- Mitre, G. B.; Kamiya, N.; Bardon, A.; Asakawa, Y. J. Nat. Prod. 2004, 67, 31. https://doi.org/10.1021/np030074z
- Black, W. C.; Brideau, C.; Chan, C.-C.; Charleson, S.; Chauret, N.; Claveau, D.; Ethier, D.; Gordon, R.; Greig, G.; Guay, J.; Hughes, G.; Jolicoeur, P.; Leblanc, Y.; Nicoll-Griffith, D.; Ouimet, N.; Riendeau, D.; Visco, D.; Wang, Z.; Xu, L.; Prasit, P. J. Med. Chem. 1999, 42, 1274. https://doi.org/10.1021/jm980642l
- Nam, N.-H.; Kim, Y.; You, Y.-J.; Hong, D.-H.; Kim, H.-M.; Ahn, B.-Z. Bioorg. Med. Chem. Lett. 2002, 12, 1955. https://doi.org/10.1016/S0960-894X(02)00321-9
- Li, X.; Kim, M. K.; Lee, U.; Kim, S.-K.; Kang, J. S.; Choi, H. D.; Son, B. W. Chem. Pharm. Bull. 2005, 53, 453 https://doi.org/10.1248/cpb.53.453
- Li, X.; Zhang, D.; Lee, U.; Li, X.; Cheng, J.; Zhu, W.; Jung, J. J.; Choi, H. D.; Son, B. W. J. Nat. Prod. 2007, 70, 307. https://doi.org/10.1021/np0600548
- 13C-NMR Spectroscopy of Organic Compounds; In Carbon-13 NMR Spectroscopy; Breitmaier, E.; Voelter, W., Eds.; VCH: Weinheim, Germany, 1990; pp 238-240.
- Flack, H. D. Acta Crystallogr. 1983, A39, 876.
- In Structure Determination of Organic Compounds, Tables of Spectral Data; Pretsch, E.; Buhlmann, P.; Affolter, C., Eds.; Springer: Berlin, 2000; pp 140 and 224.
- Waki, M.; Meienhofer, J. J. Org. Chem. 1977, 42, 2019 https://doi.org/10.1021/jo00431a046
- Mukhopadhyay, T.; Roy, K.; Sawant, S. N.; Deshmukh, S. K.; Ganguli, B. N.; Fehlhaber, H. W. J. Antibiot. 1996, 49, 210. https://doi.org/10.7164/antibiotics.49.210
- Parshikov, I. A.; Moody, J. D.; Freeman, J. P.; Lay, Jr., J. O.; Williams, A. J.; Heinze, T. M.; Sutherland, J. B. Mycologia 2002, 94, 1. https://doi.org/10.2307/3761840
- Ghisalberti, E. L.; Narbey, M. J.; Rowland, C. Y. J. Nat. Prod. 1990, 53, 520. https://doi.org/10.1021/np50068a043
- Malmstrom, J.; Christophersen, C.; Barrero, A. F.; Oltra, J. E.; Justicia, J.; Rosales, A. J. Nat. Prod. 2002, 65, 364. https://doi.org/10.1021/np0103214
- A full list of crystallographic data and parameters is deposited at Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (deposition number CCDC 615055).
- Koreeda, M.; Harada, N.; Nakanishi, K. J. Am. Chem. Soc. 1974, 96, 266. https://doi.org/10.1021/ja00808a053
Cited by
- Secondary metabolites of fungi from marine habitats vol.28, pp.2, 2011, https://doi.org/10.1039/c0np00061b
- Flavusides A and B, Antibacterial Cerebrosides from the Marine-Derived Fungus Aspergillus flavus vol.59, pp.9, 2011, https://doi.org/10.1248/cpb.59.1174
- Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action vol.11, pp.7, 2013, https://doi.org/10.3390/md11072510
- Synthesis of Chiral Cyclopentenones vol.116, pp.10, 2016, https://doi.org/10.1021/cr500504w
- Exciton coupling between enones: Quassinoids revisited vol.29, pp.9, 2017, https://doi.org/10.1002/chir.22711
- ChemInform Abstract: Bioactive Cyclopentenone Derivatives from Marine Isolates of Fungi. vol.41, pp.12, 2010, https://doi.org/10.1002/chin.201012199
- Iodine-Catalyzed Iso-Nazarov Cyclization of Conjugated Dienals for the Synthesis of 2-Cyclopentenones vol.20, pp.22, 2009, https://doi.org/10.1021/acs.orglett.8b03229
- Haber-independent, diversity-oriented synthesis of nitrogen compounds from biorenewable chitin vol.22, pp.6, 2020, https://doi.org/10.1039/d0gc00208a
- Synthesis of 2,3,4-Trisubstituted 2-Cyclopentenones via Sequential Functionalization of 2-Cyclopentenone vol.86, pp.15, 2009, https://doi.org/10.1021/acs.joc.1c01039