DOI QR코드

DOI QR Code

Bioactive Cyclopentenone Derivatives from Marine Isolates of Fungi

  • Feng, Zhile (Department of Chemistry, Pukyong National University) ;
  • Leutou, Alain S. (Department of Chemistry, Pukyong National University) ;
  • Yang, Guohua (Department of Chemistry, Pukyong National University) ;
  • Nenkep, Viviane N. (Department of Chemistry, Pukyong National University) ;
  • Siwe, Xavier N. (Department of Chemistry, Pukyong National University) ;
  • Choi, Hong-Dae (Department of Chemistry, Dongeui University) ;
  • Kang, Jung-Sook (College of Dentistry, Pusan National University) ;
  • Son, Byeng-Wha (Department of Chemistry, Pukyong National University)
  • Published : 2009.10.20

Abstract

As part of an effort to discover bioactive natural products from marine sources, we investigated the bioactive secondary metabolites from two marine isolates of the fungi, Trichoderma viride and Rhizopus stolonifer. Three cyclopentenones, myrothenones A (1) and B (2) and trichodenone A (3), were isolated from T. viride and two cyclopentenones, 2-bromomyrothenone B (4) and botrytinone (5), were isolated from R. stolonifer. The molecular structures and absolute stereochemistries of the cyclopentenones were determined from chemical and physicochemical evidence, including quantum chemistry calculations, X-ray analysis, and the circular dichroism (CD) exciton chirality method. Myrothenone A (1) displays tyrosinase inhibitory activity, with an I$C_{50}$ value of 6.6 ${\mu}M$, and is therefore more active than the positive control, kojic acid.

Keywords

References

  1. Gutierrez, L. L. P.; Maslinkiewicz, A.; Curi, R.; de Bittencourt Jr., P. I. H. Biochem. Phamacol. 2008, 75, 2245. https://doi.org/10.1016/j.bcp.2008.03.002
  2. Csaky, A. G.; Mba, M.; Plumet, J. Tetrahedron: Asymmetry 2004, 15, 647. https://doi.org/10.1016/j.tetasy.2004.01.008
  3. Conti, M. Anti-Cancer Drugs 2006, 17, 1017. https://doi.org/10.1097/01.cad.0000231471.54288.00
  4. Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, D. Experientia 1989, 45, 209. https://doi.org/10.1007/BF01954881
  5. Amagata, T.; Usami, Y.; Minoura, K.; Ito, T.; Numata, A. J. Antibiot. 1998, 51, 33. https://doi.org/10.7164/antibiotics.51.33
  6. Usami, Y.; Numata, A. Synlett. 1999, No. 6, 723.
  7. Weidler, M.; Rether, J.; Anke, T.; Erkel, G. Biochem. Biophys. Res. Commun. 2000, 276, 447. https://doi.org/10.1006/bbrc.2000.3499
  8. Lin, W.; Li, L.; Fu, H.; Sattler, I.; Huang, X.; Grabley, S. J. Antibiot. 2005, 58, 594. https://doi.org/10.1038/ja.2005.81
  9. Chomcheon, P.; Sriubolmas, N.; Wiyakrutta, S.; Ngamrojanavanich, N.; Chaichit, N.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. J. Nat. Prod. 2006, 69, 1351. https://doi.org/10.1021/np060148h
  10. Weidler, M.; Rether, J.; Anke, T.; Erkel, G.; Sterner, D. J. Antibiot 2001, 54, 679. https://doi.org/10.7164/antibiotics.54.679
  11. Bickley, J. F.; Roberts, S. M.; Santoro, M. G.; Snape, T. J. Tetrahedron 2004, 60, 2569. https://doi.org/10.1016/j.tet.2004.01.045
  12. Mikolajczyk, M.; Mikina, M.; Wieczorek, M. W.; Blaszczyk, J. Angew. Chem. Int. E. Engl. 1996, 35, 1560. https://doi.org/10.1002/anie.199615601
  13. Malmstrom, J.; Christophersen, C.; Barero, A. F.; Oltra, J. E.; Justicia, J.; Rosales, A. J. Nat. Prod. 2002, 65, 364. https://doi.org/10.1021/np0103214
  14. Lee, S.; Kim, W.-G.; Kim, E.; Ryoo, I.-J.; Lee, H. K.; Kim, J. N.; Jung, S.-H.; Yoo, I.-D. Bioorg. Med. Chem. Lett. 2005, 15, 471. https://doi.org/10.1016/j.bmcl.2004.10.057
  15. Lubken, T.; Schmidt, J.; Porzel, A.; Arnold, N.; Wessjohann, L. Phytochemistry 2004, 65, 1061. https://doi.org/10.1016/j.phytochem.2004.01.023
  16. Sassa, T.; Ooi, T.; Kinoshita, H. Biosci. Biotechnol. Biochem. 2004, 68, 2633. https://doi.org/10.1271/bbb.68.2633
  17. Mitre, G. B.; Kamiya, N.; Bardon, A.; Asakawa, Y. J. Nat. Prod. 2004, 67, 31. https://doi.org/10.1021/np030074z
  18. Black, W. C.; Brideau, C.; Chan, C.-C.; Charleson, S.; Chauret, N.; Claveau, D.; Ethier, D.; Gordon, R.; Greig, G.; Guay, J.; Hughes, G.; Jolicoeur, P.; Leblanc, Y.; Nicoll-Griffith, D.; Ouimet, N.; Riendeau, D.; Visco, D.; Wang, Z.; Xu, L.; Prasit, P. J. Med. Chem. 1999, 42, 1274. https://doi.org/10.1021/jm980642l
  19. Nam, N.-H.; Kim, Y.; You, Y.-J.; Hong, D.-H.; Kim, H.-M.; Ahn, B.-Z. Bioorg. Med. Chem. Lett. 2002, 12, 1955. https://doi.org/10.1016/S0960-894X(02)00321-9
  20. Li, X.; Kim, M. K.; Lee, U.; Kim, S.-K.; Kang, J. S.; Choi, H. D.; Son, B. W. Chem. Pharm. Bull. 2005, 53, 453 https://doi.org/10.1248/cpb.53.453
  21. Li, X.; Zhang, D.; Lee, U.; Li, X.; Cheng, J.; Zhu, W.; Jung, J. J.; Choi, H. D.; Son, B. W. J. Nat. Prod. 2007, 70, 307. https://doi.org/10.1021/np0600548
  22. 13C-NMR Spectroscopy of Organic Compounds; In Carbon-13 NMR Spectroscopy; Breitmaier, E.; Voelter, W., Eds.; VCH: Weinheim, Germany, 1990; pp 238-240.
  23. Flack, H. D. Acta Crystallogr. 1983, A39, 876.
  24. In Structure Determination of Organic Compounds, Tables of Spectral Data; Pretsch, E.; Buhlmann, P.; Affolter, C., Eds.; Springer: Berlin, 2000; pp 140 and 224.
  25. Waki, M.; Meienhofer, J. J. Org. Chem. 1977, 42, 2019 https://doi.org/10.1021/jo00431a046
  26. Mukhopadhyay, T.; Roy, K.; Sawant, S. N.; Deshmukh, S. K.; Ganguli, B. N.; Fehlhaber, H. W. J. Antibiot. 1996, 49, 210. https://doi.org/10.7164/antibiotics.49.210
  27. Parshikov, I. A.; Moody, J. D.; Freeman, J. P.; Lay, Jr., J. O.; Williams, A. J.; Heinze, T. M.; Sutherland, J. B. Mycologia 2002, 94, 1. https://doi.org/10.2307/3761840
  28. Ghisalberti, E. L.; Narbey, M. J.; Rowland, C. Y. J. Nat. Prod. 1990, 53, 520. https://doi.org/10.1021/np50068a043
  29. Malmstrom, J.; Christophersen, C.; Barrero, A. F.; Oltra, J. E.; Justicia, J.; Rosales, A. J. Nat. Prod. 2002, 65, 364. https://doi.org/10.1021/np0103214
  30. A full list of crystallographic data and parameters is deposited at Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (deposition number CCDC 615055).
  31. Koreeda, M.; Harada, N.; Nakanishi, K. J. Am. Chem. Soc. 1974, 96, 266. https://doi.org/10.1021/ja00808a053

Cited by

  1. Secondary metabolites of fungi from marine habitats vol.28, pp.2, 2011, https://doi.org/10.1039/c0np00061b
  2. Flavusides A and B, Antibacterial Cerebrosides from the Marine-Derived Fungus Aspergillus flavus vol.59, pp.9, 2011, https://doi.org/10.1248/cpb.59.1174
  3. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action vol.11, pp.7, 2013, https://doi.org/10.3390/md11072510
  4. Synthesis of Chiral Cyclopentenones vol.116, pp.10, 2016, https://doi.org/10.1021/cr500504w
  5. Exciton coupling between enones: Quassinoids revisited vol.29, pp.9, 2017, https://doi.org/10.1002/chir.22711
  6. ChemInform Abstract: Bioactive Cyclopentenone Derivatives from Marine Isolates of Fungi. vol.41, pp.12, 2010, https://doi.org/10.1002/chin.201012199
  7. Iodine-Catalyzed Iso-Nazarov Cyclization of Conjugated Dienals for the Synthesis of 2-Cyclopentenones vol.20, pp.22, 2009, https://doi.org/10.1021/acs.orglett.8b03229
  8. Haber-independent, diversity-oriented synthesis of nitrogen compounds from biorenewable chitin vol.22, pp.6, 2020, https://doi.org/10.1039/d0gc00208a
  9. Synthesis of 2,3,4-Trisubstituted 2-Cyclopentenones via Sequential Functionalization of 2-Cyclopentenone vol.86, pp.15, 2009, https://doi.org/10.1021/acs.joc.1c01039