DOI QR코드

DOI QR Code

Change in Water Contact Angle of Carbon Contaminated TiO2 Surfaces by High-energy Electron Beam

  • Kim, Kwang-Dae (Department of Chemistry, Sungkyunkwan University) ;
  • Tai, Wei Sheng (Department of Chemistry, Sungkyunkwan University) ;
  • Kim, Young-Dok (Department of Chemistry, Sungkyunkwan University) ;
  • Cho, Sang-Jin (Department of Chemistry, Sungkyunkwan University) ;
  • Bae, In-Seob (Department of Chemistry, Sungkyunkwan University) ;
  • Boo, Jin-Hyo (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Byung-Cheol (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Yang, Ki-Ho (Quantum Optics Research Division, Korea Atomic Energy Research Institute) ;
  • Pack, Ok-Kyung (Quantum Optics Research Division, Korea Atomic Energy Research Institute)
  • Published : 2009.05.20

Abstract

We studied change in water contact angle on $TiO_2$ surfaces upon high-energy electron-beam treatment. Depending on conditions of e-beam exposures, surface OH-content could be increased or decreased. In contrast, water contact angle continuously decreased with increasing e-beam exposure and energy, i.e. change in the water contact angle cannot be rationalized in terms of the overall change in the surfacestructure of carbon-contaminated $TiO_2$. In the C 1s spectra, we found that the C-O and C=O contents gradually increased with increasing e-beam energy, suggesting that the change in the surface structure of carbon layers can be important for understanding of the wettability change. Our results imply that the degree of oxidation of carbon impurity layers on oxide surfaces should be considered, in order to fully understand the change in the oxide surface wettability.

Keywords

References

  1. Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. J. Am. Chem. Soc. 2004, 126, 62 https://doi.org/10.1021/ja038636o
  2. Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysts, Fundamentals and Applications; BKC Inc.: Tokyo, 1999; pp 66-77
  3. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 4310432 https://doi.org/10.1038/41233
  4. Mills, A.; Crow, M. J. Photoenergy 2008, 470670 https://doi.org/10.1155/2008/470670
  5. Irie, H.; Tsuji, K.-I.; Hashimoto, K. Phys. Chem. Chem. Phys. 2008, 10, 3072 https://doi.org/10.1039/b800179k
  6. Feng, X.; Zhai, J.; Jiang, L. Angew. Chem. Int. Ed. 2005, 44, 5115 https://doi.org/10.1002/anie.200501337
  7. Irie, H.; Ping, T. S.; Shibata, T.; Hashimoto, K. Electrochem. Solid-State Lett. 2008, 8, D-23-D25
  8. Hwang, Y. K.; Patil, K. R.; Kim, H.-K.; Sathaye, S. D.; Hwang, J.-S.; Park, S.-E.; Chang, J.-S. Bull. Kor. Chem. Soc. 2005, 26, 1515 https://doi.org/10.5012/bkcs.2005.26.10.1515
  9. Shibata, T.; Sakai, N.; Fukuda, K.; Ebina, Y.; Sasaki, T. Phys. Chem. Chem. Phys. 2007, 9, 2413 https://doi.org/10.1039/b618448k
  10. Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988 https://doi.org/10.1021/ie50320a024
  11. Gan, W. Y.; Lam, S. W.; Chiang, K.; Amal, R.; Zhao, H.; Brungs, M. P. J. Mater. Chem. 2007, 17, 952 https://doi.org/10.1039/b618280a
  12. Ertl, G.; Küppers, J. Low Energy Electrons and Surface Chemistry; VCH Verlagsgesellschagft: Weinheim, 1985; p 76
  13. Kim, Y. D.; Stultz, J.; Goodman, D. W. Langmuir 2002, 18, 3999 https://doi.org/10.1021/la0117799
  14. Fleming, L.; Fulton, C. C.; Lucovsky, G.; Rowe, J. E.; Ulrich, M. D.; Luning, J. J. Appl. Phys. 2007, 102, 033707 https://doi.org/10.1063/1.2764004
  15. Chen, X.; Burda, C. J. Am. Chem. Soc. 2009, 130, 5018-1019
  16. Wang, L.-Q.; Baer, D. R.; Engelhard, M. H.; Shultz, A. N. Surf. Sci. 1995, 344, 237 https://doi.org/10.1016/0039-6028(95)00859-4
  17. Henderson, M. A. Langmuir 1996, 12, 5093 https://doi.org/10.1021/la960360t
  18. Moulder, J. F.; Stickle, W. F.; Sobol P. E.; Bomben, K. D. In Handbook of X-ray Photoelectron Spectroscpy; Chastain, J.; King, R. C. Jr., Eds.; Physical Electronics, Inc.: Minnesota, 1995
  19. de la Puente, G.; Pis, J. J.; Menedez, J. A.; Grange, P. J. Anal. Appl. Pyrol. 1997, 43 125 https://doi.org/10.1016/S0165-2370(97)00060-0
  20. Cho, S. J.; Boo, J.-H. manuscript in preparation

Cited by

  1. Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics pp.2159-6867, 2014, https://doi.org/10.1557/mrc.2014.20
  2. Adhesion Enhancement of a Plated Copper Layer on an AlN Substrate Using a Chemical Grafting Process at Room Temperature vol.161, pp.10, 2014, https://doi.org/10.1149/2.1061410jes
  3. Enhancement of Photocatalytic Activity of TiO2 by High-Energy Electron-Beam Treatment Under Atmospheric Pressure vol.135, pp.1-2, 2010, https://doi.org/10.1007/s10562-010-0267-6
  4. Band gap engineered TiO2nanoparticles for visible light induced photoelectrochemical and photocatalytic studies vol.2, pp.3, 2009, https://doi.org/10.1039/c3ta14052k
  5. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates vol.49, pp.32, 2016, https://doi.org/10.1088/0022-3727/49/32/325304
  6. Synthesis, Characterization and Study of Influence of Pure TiO2 Nanoparticles Thin Film Developed By e-Beam Evaporation vol.4, pp.2, 2009, https://doi.org/10.1016/j.matpr.2017.02.281