DOI QR코드

DOI QR Code

Subcellular Localization of Diacylglycerol-responsive Protein Kinase C Isoforms in HeLa Cells

  • Kazi, Julhash U. (Biomedical Research Center for Signal Transduction Networks, Department of Chemistry, Inha University) ;
  • Kim, Cho-Rong (Biomedical Research Center for Signal Transduction Networks, Department of Chemistry, Inha University) ;
  • Soh, Jae-Won (Biomedical Research Center for Signal Transduction Networks, Department of Chemistry, Inha University)
  • Published : 2009.09.20

Abstract

Subcellular localization of protein kinase often plays an important role in determining its activity and specificity. Protein kinase C (PKC), a family of multi-gene protein kinases has long been known to be translocated to the particular cellular compartments in response to DAG or its analog phorbol esters. We used C-terminal green fluorescent protein (GFP) fusion proteins of PKC isoforms to visualize the subcellular distribution of individual PKC isoforms. Intracellular localization of PKC-GFP proteins was monitored by fluorescence microscopy after transient transfection of PKC-GFP expression vectors in the HeLa cells. In unstimulated HeLa cells, all PKC isoforms were found to be distributed throughout the cytoplasm with a few exceptions. PKC$\theta$ was mostly localized to the Golgi, and PKC$\gamma$, PKC$\delta$ and PKC$\eta$ showed cytoplasmic distribution with Golgi localization. DAG analog TPA induced translocation of PKC-GFP to the plasma membrane. PKC$\alpha$, PKC$\eta$ and PKC$\theta$ were also localized to the Golgi in response to TPA. Only PKC$\delta$ was found to be associated with the nuclear membrane after transient TPA treatment. These results suggest that specific PKC isoforms are translocated to different intracellular sites and exhibit distinct biological effects.

Keywords

References

  1. Newton, A. C. Biochem. J. 2003, 370, 361 https://doi.org/10.1042/BJ20021626
  2. Kazi, J. U.; Kabir, N. N.; Soh, J. W. Gene 2008, 410, 147 https://doi.org/10.1016/j.gene.2007.12.003
  3. Lee, Y. J.; Soh, J. W.; Jeoung, D. I.; Cho, C. K.; Jhon, G. J.; Lee, S. J.; Lee, Y. S. Biochim. Biophys. Acta 2003, 1593, 219 https://doi.org/10.1016/S0167-4889(02)00392-0
  4. Spitaler, M.; Cantrell, D. A. Nat. Immunol. 2004, 5, 785 https://doi.org/10.1038/ni1097
  5. Shirai, Y.; Saito, N. J. Biochem. (Tokyo) 2002, 132, 663 https://doi.org/10.1093/oxfordjournals.jbchem.a003271
  6. Kazi, J. U.; Soh, J. W. Biochem. Biophys. Res. Commun. 2007, 364, 231 https://doi.org/10.1016/j.bbrc.2007.09.123
  7. Sakai, N.; Sasaki, K.; Ikegaki, N.; Shirai, Y.; Ono, Y.; Saito, N. J. Cell. Biol. 1997, 139, 1465 https://doi.org/10.1083/jcb.139.6.1465
  8. Maloney, J. A.; Tsygankova, O.; Szot, A.; Yang, L.; Li, Q.; Williamson, J. R. Am. J. Physiol. 1998, 274, C974
  9. Wang, Q. J.; Bhattacharyya, D.; Garfield, S.; Nacro, K.; Marquez, V. E.; Blumberg, P. M. J. Biol. Chem. 1999, 274, 37233 https://doi.org/10.1074/jbc.274.52.37233
  10. Hocevar, B. A.; Fields, A. P. J. Biol. Chem. 1991, 266, 28
  11. Maissel, A.; Marom, M.; Shtutman, M.; Shahaf, G.; Livneh, E. Cell Signal 2006, 18, 1127 https://doi.org/10.1016/j.cellsig.2005.09.003
  12. Sawai, H.; Okazaki, T.; Takeda, Y.; Tashima, M.; Sawada, H.; Okuma, M.; Kishi, S.; Umehara, H.; Domae, N. J. Biol. Chem. 1997, 272, 2452 https://doi.org/10.1074/jbc.272.4.2452
  13. Soh, J. W.; Lee, Y. S.; Weinstein, I. B. J. Exp. Ther. Oncol. 2003, 3, 115 https://doi.org/10.1046/j.1359-4117.2003.01087.x
  14. Kajimoto, T.; Ohmori, S.; Shirai, Y.; Sakai, N.; Saito, N. Mol. Cell. Biol. 2001, 21, 1769 https://doi.org/10.1128/MCB.21.5.1769-1783.2001
  15. Kazi, J. U.; Soh, J. W. Mol. Cells 2008, 26, 462
  16. Kazi, J. U.; Soh, J. W. Bull. Korean Chem. Soc. 2008, 29, 252 https://doi.org/10.5012/bkcs.2008.29.1.252
  17. Xu, T. R.; Rumsby, M. G. FEBS Lett 2004, 570, 20 https://doi.org/10.1016/j.febslet.2004.05.080
  18. Goodnight, J. A.; Mischak, H.; Kolch, W.; Mushinski, J. F. J. Biol. Chem. 1995, 270, 9991 https://doi.org/10.1074/jbc.270.17.9991
  19. DeVries, T. A.; Neville, M. C.; Reyland, M. E. Embo. J. 2002, 21, 6050 https://doi.org/10.1093/emboj/cdf606
  20. DeVries-Seimon, T. A.; Ohm, A. M.; Humphries, M. J.; Reyland, M. E. J. Biol. Chem. 2007, 282, 22307 https://doi.org/10.1074/jbc.M703661200
  21. Sommers, G. M.; Alfieri, A. A. Cancer Invest. 1998, 16, 462 https://doi.org/10.3109/07357909809011700
  22. Almholt, K.; Arkhammar, P. O.; Thastrup, O.; Tullin, S. Biochem. J. 1999, 337(Pt 2), 211 https://doi.org/10.1042/0264-6021:3370211
  23. Johnson, J. A.; Gray, M. O.; Chen, C. H.; Mochly-Rosen, D. J. Biol. Chem. 1996, 271, 24962 https://doi.org/10.1074/jbc.271.40.24962
  24. Wagner, S.; Harteneck, C.; Hucho, F.; Buchner, K. Exp. Cell Res. 2000, 258, 204 https://doi.org/10.1006/excr.2000.4925

Cited by

  1. Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia vol.30, pp.4, 2013, https://doi.org/10.1007/s12032-013-0757-7
  2. SOCS6 is a selective suppressor of receptor tyrosine kinase signaling vol.35, pp.11, 2014, https://doi.org/10.1007/s13277-014-2542-4
  3. Grb10 is a dual regulator of receptor tyrosine kinase signaling vol.41, pp.4, 2014, https://doi.org/10.1007/s11033-014-3046-4