References
- Silveira, C. C.; Mendes, S. R. Tetrahedron Lett. 2007, 48, 7469. https://doi.org/10.1016/j.tetlet.2007.08.074
- Hosseinzadeh, R.; Tajbakhsh, M.; Khaledi, H.; Ghodrati, K. Monatsh. Chem. 2007, 138, 871. https://doi.org/10.1007/s00706-007-0685-3
- Christoforou, A.; Nicolaou, G.; Elemes, Y. Tetrahedron Lett. 2006, 47, 9211. https://doi.org/10.1016/j.tetlet.2006.10.134
- Ozen, R.; Aydin, F. Monatsh. Chem. 2006, 137, 307. https://doi.org/10.1007/s00706-005-0430-8
- Ballini, R.; Maggi, R.; Palmieri, A.; Sartorib, G. Synthesis 2007, 3017.
- Mohammadpoor-Baltork, I.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Zolfigol, M. A.; Abdollahi-Alibeik, M.; Khosropour, A. R.; Kargar, H.; Hojati, S. F. Catal. Commun. 2008, 9, 894. https://doi.org/10.1016/j.catcom.2007.09.017
- Zolfigol, M. A.; Amani, K.; Hajjami, M.; Ghorbani-Choghamarani, A.; Ayazi-Nasrabadi, R.; Jafari, S. Catal. Commun. 2008, 9, 1739. https://doi.org/10.1016/j.catcom.2008.01.029
- Zolfigol, M. A.; Amani, K.; Hajjami, M.; Ghorbani-Choghamarani, A. Monatsh. Chem. 2008, 139, 895. https://doi.org/10.1007/s00706-008-0868-6
- Ghorbani-Choghamarani, A.; Shiri, L.; Zeinivand, J. Bull. Korean Chem. Soc. 2008, 29, 2496. https://doi.org/10.5012/bkcs.2008.29.12.2496
- Ghorbani-Choghamarani, A.; Goudarziafshar, H.; Hajjami, M.; Soltani, J. J. Chin. Chem. Soc. 2008, 55, 1191.
- Ballistreri, F. P.; Tomaselli, G. A.; Toscano, R. M. Tetrahedron Lett. 2008, 49, 3291. https://doi.org/10.1016/j.tetlet.2008.03.068
- Ruano, J. L. G.; Parra, A.; Aleman, J. Green Chem. 2008, 10, 706. https://doi.org/10.1039/b800705e
- Regino, C. A. S.; Richardson, D. E. Inorg. Chim. Acta 2007, 360, 3971. https://doi.org/10.1016/j.ica.2007.05.020
- Golchoubian, H.; Hosseinpoor, F. Catal. Commun. 2007, 8, 697. https://doi.org/10.1016/j.catcom.2006.08.036
- Heravi, M. M.; Derikvand, F.; Oskooie, H. A.; Hekmat, R. S.; Tajbakhsh, M. Synth. Commun. 2007, 37, 513. https://doi.org/10.1080/00397910601039267
- Akdag, A.; Webb, T.; Worley, S. D. Tetrahedron Lett. 2006, 47, 3509. https://doi.org/10.1016/j.tetlet.2006.03.105
- Ghorbani-Choghamarani, A.; Zolfigol, M. A.; Hajjami, M.; Jafari, S. J. Chin. Chem. Soc. 2008, 55, 1208.
- Ghorbani-Choghamarani, A.; Zolfigol, M. A.; Salehi, P.; Ghaemi, E.; Madrakian, E.; Nasr-Isfahanid, H.; Shahamirian, M. Acta Chim. Slov. 2008, 55, 644
- Zolfigol, M. A.; Salehi, P.; Ghorbani-Choghamarani, A.; Safaiee, M.; Shahamirian, M. Synth. Commun. 2007, 37, 1817. https://doi.org/10.1080/00397910701316276
- Zolfigol, M. A.; Khazaei, A.; Ghorbani-Choghamarani, A.; Rostami, A. Phosphorus, Sulfur, and Silicon 2006, 181, 2453. https://doi.org/10.1080/10426500600737435
- Zolfigol, M. A.; Amani, K.; Ghorbani-Choghamarani, A.; Hajjami, M. Monatsh. Chem. 2009, 140, 65. https://doi.org/10.1007/s00706-008-0015-4
- Zolfigol, M. A.; Shirini, F.; Ghorbani-Choghamarani, A. Synthesis 2006, 2043.
- Zolfigol, M. A. Tetrahedron 2001, 57, 9509. https://doi.org/10.1016/S0040-4020(01)00960-7
- Montazerozohori, M.; Joohari, S.; Karami, B.; Haghighat, N. Molecules 2007, 12, 694. https://doi.org/10.3390/12030694
Cited by
- Trimethylphenylammonium Tribromide as a New and Efficient Oxidizing Agent for the Oxidative Coupling of Thiols into Disulfides and Chemoselective Oxidation of Sulfides into Sulfoxides vol.186, pp.8, 2011, https://doi.org/10.1080/10426507.2010.527878
- A mild and efficient protocol for oxidation of thiols to disulfides in water vol.23, pp.2, 2012, https://doi.org/10.1002/hc.20760
- from Hydrogen Peroxide/Acids/Iodide Potassium or Sodium Systems vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4366
- Synthesis of disulfides by laccase-catalyzed oxidative coupling of heterocyclic thiols vol.15, pp.6, 2013, https://doi.org/10.1039/c3gc40106e
- Rapid and Convenient Method for the Synthesis of Symmetrical Disulfides vol.188, pp.8, 2013, https://doi.org/10.1080/10426507.2012.717145
- Simple and efficient oxidative transformation of thiols to disulfides using Cu(NO3)2·3H2O in H2O/AcOEt vol.145, pp.7, 2014, https://doi.org/10.1007/s00706-014-1178-9
- Preparation and characterization of functionalized Cu(II) Schiff base complex on mesoporous MCM-41 and its application as effective catalyst for the oxidation of sulfides and oxidative coupling of thiols vol.22, pp.4, 2015, https://doi.org/10.1007/s10934-015-9961-5
- ChemInform Abstract: An Efficient and New Method on the Oxidative Coupling of Thiols under Mild and Heterogeneous Conditions. vol.40, pp.45, 2009, https://doi.org/10.1002/chin.200945034
- Chemoselective and Catalytic Trimethylsilylation of Alcohols and Phenols by 1,1,1,3,3,3-Hexamethyldisilazane and Catalytic Amounts of PhMe3N+Br3- vol.31, pp.9, 2009, https://doi.org/10.1016/s1872-2067(10)60107-6
- Green and Metal-free Catalytic Oxidation of Urazoles into Triazolinediones by Guanidinium Nitrate and Catalytic Amounts of Silica Sulfuric Acid vol.31, pp.8, 2009, https://doi.org/10.5012/bkcs.2010.31.8.2389
- A Mild Procedure for the Preparation of o‐Nitrophenols by Nitro Urea or Ammonium Nitrate in the Presence of Silica Sulfuric Acid (SiO2‐OSO3H) vol.29, pp.4, 2009, https://doi.org/10.1002/cjoc.201190148
- Versatile and Efficient Conversion of Thiols into Disulfides by Poly(4-vinylpyridinium tribromide) as Reusable Oxidizing Polymer vol.32, pp.2, 2009, https://doi.org/10.5012/bkcs.2011.32.2.693
- Supported nitric acid on polyvinylpolypyrrolidone as an efficient and mild nitrating agent for the selective preparation of nitrophenols vol.18, pp.6, 2011, https://doi.org/10.1016/j.scient.2011.08.010
- Preactivated thiomers as mucoadhesive polymers for drug delivery vol.33, pp.5, 2009, https://doi.org/10.1016/j.biomaterials.2011.10.021
- Aerobic oxidation of thiols to disulfides under ball-milling in the absence of any catalyst, solvent, or base vol.3, pp.27, 2013, https://doi.org/10.1039/c3ra41996g
- Recent advances in S-S bond formation vol.4, pp.27, 2009, https://doi.org/10.1039/c3ra45997g
- Oxidative coupling of aromatic thiols to corresponding disulfides using magnetic particle-supported sulfonic acid catalyst and hydrogen peroxide under mild conditions vol.36, pp.3, 2009, https://doi.org/10.1080/17415993.2015.1024120
- Synthesis and characterization of Co (II) and Fe (III) Schiff base complexes grafted onto mesoporous MCM-41: A heterogeneous and recyclable nanocatalysts for the selective oxidation of sulfides and ox vol.191, pp.10, 2009, https://doi.org/10.1080/10426507.2016.1208200
- New Complex of Copper on Boehmite Nanoparticles as Highly Efficient and Reusable Nanocatalyst for Synthesis of Sulfides and Ethers vol.4, pp.30, 2019, https://doi.org/10.1002/slct.201901444
- Magnetic MCM-41 nanoparticles as a support for the immobilization of a palladium organometallic catalyst and its application in C-C coupling reactions vol.43, pp.36, 2009, https://doi.org/10.1039/c9nj02727k
- Palladium fabricated on boehmite as an organic-inorganic hybrid nanocatalyst for C-C cross coupling and homoselective cycloaddition reactions vol.44, pp.9, 2009, https://doi.org/10.1039/c9nj06129k
- Synthesis and characterization of VO-vanillin complex immobilized on MCM‐41 and its facile catalytic application in the sulfoxidation reaction, and synthesis of 2,3‐dihydroquinazolin vol.67, pp.8, 2009, https://doi.org/10.1002/jccs.201900531
- Efficient, selective and mild oxidation of sulfides and oxidative coupling of thiols catalyzed by Pd(II)-isatin Schiff base complex immobilized into three-dimensional mesoporous silica KIT-6 vol.41, pp.5, 2009, https://doi.org/10.1080/17415993.2020.1769095
- A new palladium heterogeneous complex (Pd-Gu@BOEH): chemoselective, phosphine-free and practical nanocatalyst in carbon-carbon cross-coupling reaction vol.47, pp.3, 2009, https://doi.org/10.1007/s11164-020-04315-4
- Magnetite@MCM‐41 nanoparticles as support material for Pd‐N‐heterocyclic carbene complex: A magnetically separable catalyst for Suzuki–Miyaura reaction vol.35, pp.6, 2021, https://doi.org/10.1002/aoc.6233