DOI QR코드

DOI QR Code

Study of Complexes of C2- and C6-dihydroceramides with Transition Metal Ions Using Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS)

  • Published : 2009.02.20

Abstract

The complexes of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have been investigated by using Electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The formation and fragmentation pathways of several doubly charged cluster ions as well as singly charged cluster ions of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have studied by ESI-MS/MS in the positive mode. Under ESI conditions, dihydroceramides form singly and doubly charged complexes with transition metal ions $(Mn^{2+},\;Fe^{2+},\;Co^{2+},\;Ni^{2+},\;and\;Zn^{2+}\;except\;Cu^{2+})$ with the compositions of $[DHCer+M+2H^2O-H]^+,\;[2DHCer+M+2H2O-H]^+,\;[3DHCer+M+2H2O-H]^+,\;[2DHCer+M]^{2+},\;[3DHCer+M]^{2+},\;[4DHCer+M]^{2+},\;[5DHCer+M]^{2+},\;and\;[6DHCer+M]^{2+}\;(DHCer\;=\;C_2-\;or\;C_6$-dihydroceramide, M = transition metal ion). The different complexation behavior of copper is responsible for relatively lower affinity of dihydroceramides to copper compared to those of other transition metals. It is also found that in the mass spectrum of the dihydroceramide complexes with copper(II), [2DHCer+Cu-H]$^+$ was observed with considerable intensity as well as [2DHCer+Cu+2$H_2O-H]^+$ due to its different geometry from those of other metals.

Keywords

References

  1. Kolesnick, R. N.; Goni, F. M.; Alonso, A. J. Cell Physiol. 2000, 184, 285. https://doi.org/10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3
  2. Jayadev, S.; Liu, B.; Bielawska, A. E.; Lee, J. Y.; Nazaire, F.;Pushkareva, M. Y.; Obeid, L. M.; Hannun, Y. A. J. Biol. Chem. 1995, 270, 2047. https://doi.org/10.1074/jbc.270.5.2047
  3. Hannun, Y. A.; Luberto, C. Trends Cell Biol. 2000, 10, 73. https://doi.org/10.1016/S0962-8924(99)01694-3
  4. Kolesnick, R. N.; Krönke, M. Ann. Rev. Physiol. 1998, 60, 643. https://doi.org/10.1146/annurev.physiol.60.1.643
  5. Riboni, L.; Prinetti, A.; Bassi, R.; Caminiti, A.; Tettamanti, G. J. Biol. Chem. 1995, 270, 26868. https://doi.org/10.1074/jbc.270.45.26868
  6. Venable, M. E.; Lee, J. Y.; Smyth, M. J.; Bielawska, A.; Obeid, L. M. J. Biol. Chem. 1995, 270, 30701. https://doi.org/10.1074/jbc.270.51.30701
  7. Pena, L. A.; Fuks, Z.; Koksnick, R. Biochem. Pharmacol. 1997, 53, 615. https://doi.org/10.1016/S0006-2952(96)00834-9
  8. Okazaki, T.; Bielawska, A.; Bell, R. M.; Hannun, Y. A. J. Biol. Chem. 1990, 265, 15823.
  9. Fillet, M.; Bentires-Alj, M.; Deregowski, V.; Greimers, R. et al. Biochem. Pharm. 2003, 65, 1633. https://doi.org/10.1016/S0006-2952(03)00125-4
  10. Shikata, K.; Niiro, H.; Azuma, H.; Ogino, K.; Tachibana, T. Bioorg. Med. Chem. 2003, 11, 2723. https://doi.org/10.1016/S0968-0896(03)00228-1
  11. Silverman, R. B. The Organic Chemistry of Enzyme-Catalyzed Reactions; Academic Press: New York, 2000.
  12. Katta, V.; Chowdhury, S. K.; Chait, B. T. J. Am. Chem. Soc. 1990, 112, 5348. https://doi.org/10.1021/ja00169a051
  13. Hsu, F. F.; Turk, J. J. Am. Soc. Mass Spectrom. 2002, 13, 558. https://doi.org/10.1016/S1044-0305(02)00358-6
  14. Raith, K.; Neubert, R. H. H. Rapid Commun. Mass Spectrom. 1998, 12, 935. https://doi.org/10.1002/(SICI)1097-0231(19980731)12:14<935::AID-RCM260>3.0.CO;2-U
  15. Han, X. Anal. Biochem. 2002, 302, 199. https://doi.org/10.1006/abio.2001.5536
  16. Ann, Q.; Adams, J. J. Am. Soc. Mass Spectrom. 1992, 3, 260. https://doi.org/10.1016/1044-0305(92)87010-V
  17. Ann, Q.; Adams, J. Anal. Chem. 1993, 65, 7. https://doi.org/10.1021/ac00049a004
  18. Kerwin, J. L.; Tuininga, A. R.; Ericsson, L. H. J. Lipid Res. 1994, 35, 1102.
  19. Hsu, F. F.; Turk, J.; Stewart, M. E.; Downing, D. T. J. Am. Soc. Mass. Spectrom. 2002, 13, 680. https://doi.org/10.1016/S1044-0305(02)00362-8
  20. Cremesti, A. E.; Fischl, A. S. Lipids 2000, 35, 937. https://doi.org/10.1007/s11745-000-0603-1
  21. Gu, M.; Kerwin, J. L.; Watts, J. D.; Aebersold, R. Anal. Biochem. 1997, 244, 347. https://doi.org/10.1006/abio.1996.9915
  22. Lim, J. Y.; Kumar, A. P.; Lee, Y. I. Eur. J. Mass Spectrum. 2008, 14, 87. https://doi.org/10.1255/ejms.915
  23. Kok, J. W.; Karakashian, N. M.; Klappe, K.; Alexander, C.;Merrill, A. H. Jr. J. Biol. Chem. 1997, 272, 21128. https://doi.org/10.1074/jbc.272.34.21128
  24. Shen, J.; Brodbelt, J. J. Mass Spectrom. 1999, 34, 137. https://doi.org/10.1002/(SICI)1096-9888(199902)34:2<137::AID-JMS776>3.0.CO;2-0

Cited by

  1. vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1449
  2. Current literature in mass spectrometry vol.44, pp.9, 2009, https://doi.org/10.1002/jms.1494
  3. Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS vol.30, pp.9, 2009, https://doi.org/10.5012/bkcs.2009.30.9.1996