DOI QR코드

DOI QR Code

1,n-Alkanedithiol (n = 2, 4, 6, 8, 10) Self-Assembled Monolayers on Au(111): Electrochemical and Theoretical Approach

  • Qu, Deyu (Department of Advanced Materials Chemistry, Korea University) ;
  • Kim, Byung-Cheol (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Chi-Woo J. (Department of Advanced Materials Chemistry, Korea University) ;
  • Uosaki, Kohei (Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University)
  • Published : 2009.11.20

Abstract

The structures of 1,n-alkanedithiol (n = 2, 4, 6, 8, 10) self-assembled monolayers (SAMs) on a Au(111) substrate were investigated by electrochemical measurements and theoretical calculations. The results of the experimental techniques indicated that the dithiols, except n = 2, showed an upright molecular structure in the SAMs, in which alkanedithiols were bound to the Au surface via only one thiol functionality and the other one faced up to the air. The results also suggested that the formed dithiol SAMs were densely packed and highly oriented. Except ethanedithiol, which was thought to form a bilayer, the reductive desorption peak potentials of 1,n-alkanedithiol (n = 4, 6, 8, 10) SAMs were more negative than those of the corresponding monothiol ones in 0.1 M KOH solutions. This illustrates that the dithiol SAMs had higher stability than the corresponding monothiol ones. The major part of the high stability may be attributed to the van der Waals interaction among the sulfur atoms on top of the dithiol SAMs. The molecular modeling calculation showed that the structures of dithiol SAMs were similar to those of the corresponding monothiol SAMs and that all the dithiol SAMs, except ethanedithiol, were more stable than the corresponding monothiol SAMs. The calculated energy differences between dithiol and monothiol SAMs decreased with the increment of alkyl-chain length.

Keywords

References

  1. Love, A. C.; Estroff, L. A.; Kribel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103 https://doi.org/10.1021/cr0300789
  2. Ulman, A. An Introduction to Ultra-Thin Organic Films from Langmuir-Blodgett to Self-Assembly; Academic press, San Diego; 1991
  3. Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F. J. Am. Chem. Soc. 2008, 130, 318 https://doi.org/10.1021/ja0762386
  4. Boer, B.; Frank, M. M.; Chabal, Y. J.; Jiang, W.; Garfunkel, E.; Bao, Z. Langmuir 2004, 20, 1539 https://doi.org/10.1021/la0356349
  5. Ohgi, T.; Sheng, H.-Y.; Nejoh, H. Appl. Surf. Sci. 1998, 130-132, 919 https://doi.org/10.1016/S0169-4332(98)00177-9
  6. Ohgi, T.; Sheng, H.-Y.; Dong, Z.-C.; Nejoh, H.; Fujita, D. Appl. Phys. Lett. 2001, 79, 2453 https://doi.org/10.1063/1.1409585
  7. Andres, R. P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J. I.; Kubiak, C. P.; Mahoney, W.; Osifchin, R. G.; Reifenberger, R. Science 1996, 272, 1323 https://doi.org/10.1126/science.272.5266.1323
  8. Ohgi, T.; Sheng, H.-Y.; Dong, Z.-C.; Nejoh, H. Surf. Sci. 1999, 442, 277 https://doi.org/10.1016/S0039-6028(99)00933-4
  9. Esplandiu, M. J.; Noeske, P.-L. M. Appl. Surf. Sci. 2002, 199, 166 https://doi.org/10.1016/S0169-4332(02)00608-6
  10. Tarlov, M. J. Langmuir 1992, 8, 80 https://doi.org/10.1021/la00037a017
  11. Ohgi, T.; Fujita, D.; Deng, W.; Dong, Z.-C.; Nejoh, H. Surf. Sci. 2001, 493, 453 https://doi.org/10.1016/S0039-6028(01)01253-5
  12. Speets, E. A.; Ravoo, B. J.; Roesthuis, F. J. G.; Vroegindeweij, F.; Blank, D. H. A.; Reinhoudt, D. N. Nano Lett. 2004, 4, 841 https://doi.org/10.1021/nl049774u
  13. Speets, E. A.; Dordi, B.; Ravoo, B. J.; Oncel, N.; Hallback, A.-S.; Zandvliet, H. J. W.; Poelsema, B.; Rijnders, G.; Blank, D. H. A.; Reinhoudt, D. N. Small 2005, 1, 395 https://doi.org/10.1002/smll.200400126
  14. Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571 https://doi.org/10.1126/science.1064354
  15. Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J. F.; Willner, I. Science 2003, 299, 1877 https://doi.org/10.1126/science.1080664
  16. Ramachandran, G. K.; Hopson, T. J.; Rawlett, A. M.; Nagahara, L. A.; Primak, A.; Lindsay, S. M. Science 2003, 300, 1413 https://doi.org/10.1126/science.1083825
  17. Zheng, J.; Zhou, Y.; Li, X.; Ji, Y.; Lu, T.; Gu, R. Langmuir 2003, 19, 632 https://doi.org/10.1021/la011706p
  18. Baunach, T.; Ivanova, V.; Kolb, D. M.; Boyen, H.-G.; Ziemann, P.; Buttner, M.; Oelhafen, P. Adv. Mater. 2004, 16, 2024. https://doi.org/10.1002/adma.200400409
  19. Ivanova, V.; Baunach, T.; Kolb, D. M. Electrochim. Acta 2005, 50, 4283 https://doi.org/10.1016/j.electacta.2005.05.047
  20. Manolova, M.; Ivanova, V.; Kolb, D. M.; Boyen, H.-G.; Ziemann, P.; Buttner, M.; Romanyuk, A.; Oelhafen, P. Surf. Sci. 2005, 590, 146 https://doi.org/10.1016/j.susc.2005.06.005
  21. Manolova, M.; Kayser, M.; Kolb, D. M.; Boyen, H.-G.; Ziemann, P.; Mayerc, D.; Wirth, A. Electrochim. Acta 2007, 52, 2740 https://doi.org/10.1016/j.electacta.2006.08.038
  22. Qu, D.; Uosaki, K. Chem. Lett 2006, 35(3), 258 https://doi.org/10.1246/cl.2006.258
  23. Qu, D.; Uosaki, K. J. Phys. Chem. B 2006, 110, 17570 https://doi.org/10.1021/jp0632135
  24. Sivanesan, A.; Kannan, P.; Abraham John, S. Electrochim. Acta 2007, 52, 8118 https://doi.org/10.1016/j.electacta.2007.07.020
  25. Rajalingam, K.; Strunskus, T.; Terfort, A.; Fischer, R. A.; Woll, C. Langmuir 2008, 24, 7986 https://doi.org/10.1021/la8008927
  26. Riskin, M.; Basnar, B.; Chegel, V. I.; Katz, E.; Willner, I.; Shi, F.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 1253 https://doi.org/10.1021/ja0561183
  27. Burst, M.; Blass, P. M.; Bard, A. J. Langmuir 1997, 13, 5602 https://doi.org/10.1021/la970493u
  28. Deng, W.; Yang, L.; Fujita, D.; Nejoh, H.; Bai, C. Appl. Phys. A 2000, 71, 6390
  29. Venkataramanan, M.; Murty, K. V. G. K.; Pradeep, T.; Deepali, W.; Vijayamohanan, K. Langmuir 2000, 16, 7673 https://doi.org/10.1021/la9908642
  30. Nakanishi, T.; Ohtani, B.; Shimazu, K.; Uosaki, K. Chem. Phys. Lett. 1997, 278, 233 https://doi.org/10.1016/S0009-2614(97)01069-5
  31. Nakanishi, T.; Ohtani, B.; Uosaki, K. J. Phys. Chem. B 1998, 102, 1571 https://doi.org/10.1021/jp973046w
  32. Kohli, P.; Taylor, K. K.; Harris, J. J.; Blanchard, G. J. J. Am. Chem. Soc. 1998, 120, 11962 https://doi.org/10.1021/ja981987w
  33. Rifai, S.; Laferriere, M.; Qu, D.; Wayner, D. D. M.; Wilde, C. P.; Morin, M. J. Electroanal. Chem. 2002, 531, 111 https://doi.org/10.1016/S0022-0728(02)01069-0
  34. Rifai, S.; Morin, M. J. Electroanal. Chem. 2003, 550-551, 277 https://doi.org/10.1016/S0022-0728(03)00043-3
  35. Rifai, S.; Lopinski, G. P.; Ward, T.; Wayner, D. D. M.; Morin, M. Langmuir 2003, 19, 8916 https://doi.org/10.1021/la034959m
  36. Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252 https://doi.org/10.1126/science.278.5336.252
  37. Akkerman, H. B.; Naber, R. C. G.; Jongbloed, B.; van Hal, P. A.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B. Proc. Natl. Acad. Sci. 2007, 104, 11161 https://doi.org/10.1073/pnas.0701472104
  38. Akkerman, H. B.; Kronemeijer, A. J.; van Hal, P. A.; de Leeuw, D. M.; Blom, P. W. M.; de Boer, B. Small 2008, 4, 100 https://doi.org/10.1002/smll.200700623
  39. Leung, T. Y. B.; Gerstenberg, M. C.; Lavrich, D. J.; Scoles, G. Langmuir 2000, 16, 549 https://doi.org/10.1021/la9906222
  40. Shon, Y. S.; Colorado, R.; Williams, C. T.; Bain, C. B.; Lee, T. R. Langmuir 2000, 16, 541 https://doi.org/10.1021/la981698l
  41. Murty, K. V. G. K.; Venkataramanan, M.; Pradeep, T. Langmuir 1998, 14, 5446 https://doi.org/10.1021/la980249i
  42. Lee, T. G.; Kim, K.; Kim, M. S. J. Phys. Chem. 1991, 95, 9950 https://doi.org/10.1021/j100177a063
  43. Kwon, C. K.; Kim, K.; Kim, M. S.; Lee, Y. S. J. Mol. Struct. 1989, 197, 171 https://doi.org/10.1016/0022-2860(89)85160-9
  44. Cho, S. H.; Han, H. S.; Jang, D.-J.; Kim, K.; Kim, M. S. J. Phys. Chem. 1995, 99, 10594 https://doi.org/10.1021/j100026a024
  45. Tour, J. M.; Jones, L., II; Pearson, D. L.; Lamba, J. S.; Burgin, T. P.; Whitesides, G. M.; Allara, D. L.; Parikh, A. N.; Atre, S. V. J. Am. Chem. Soc. 1995, 117, 9529 https://doi.org/10.1021/ja00142a021
  46. Joo, S. W.; Han, S. W.; Kim, K. Langmuir 2000, 16, 5391 https://doi.org/10.1021/la991331w
  47. Tai, Y.; Shaporenko, A.; Rong, H.-T.; Buck, M.; Eck, W.; Grunze, M.; Zharnikov, M. J. Phys. Chem. B 2004, 108, 16806 https://doi.org/10.1021/jp0402380
  48. Carot, M. L.; Esplandiu, M. J.; Cometto, F. P.; Patrito, E. M.; Macagno, V. A. J. Electroanal. Chem. 2005, 579, 13 https://doi.org/10.1016/j.jelechem.2005.01.019
  49. Esplandiu, M. J.; Carot, M. L.; Cometto, F. P.; Macagno, V. A.; Patrito, E. M. Surf. Sci. 2006, 600, 155 https://doi.org/10.1016/j.susc.2005.10.013
  50. Pugmire, D. L.; Tarlov, M. J.; Zee, R. D. V.; Naciri, J. Langmuir 2003, 19, 3720 https://doi.org/10.1021/la0208530
  51. Joo, S. W.; Han, S. W.; Kim, K. J. Phys. Chem. B 1999, 103, 10831 https://doi.org/10.1021/jp992230+
  52. Azzam, W.; Wehner, B. I.; Fischer, R. A.; Terfort, A.; Woll, C. Langmuir 2002, 18, 7766 https://doi.org/10.1021/la020426m
  53. Niklewski, A.; Azzam, W.; Strunskus, T.; Fischer, R. A.; Woll, C. Langmuir 2004, 20, 8620 https://doi.org/10.1021/la049619v
  54. Liang, J.; Rosa, L. G.; Scoles, G. J. Phys. Chem. C 2007, 111, 17275 https://doi.org/10.1021/jp076470y
  55. Garcia-Raya, D.; Madueno, R.; Sevilla, J. M.; Blazquez, M.; Pineda, T. Electrochim. Acta 2008, 53, 8026 https://doi.org/10.1016/j.electacta.2008.06.017
  56. Vandamme, N.; Snauwaert, J.; Janssens, E.; Vandeweert, E.; Lievens, P.; Haesendonck, C. V. Surf. Sci. 2004, 558, 57 https://doi.org/10.1016/j.susc.2004.03.058
  57. Sur, U. K.; Subramanian, R.; Lakshminarayanan, V. J. Colloid Interface Sci. 2003, 266, 175 https://doi.org/10.1016/S0021-9797(03)00568-X
  58. Clavilier, J.; Faure, R.; Guinet, G.; Durand, R. J. Electroanal. Chem. 1980, 107, 205 https://doi.org/10.1016/S0022-0728(79)80022-4
  59. HyperChem, Release 7.5 for windows; Hypercube, Inc
  60. HyperChem Manual; Hypercube, Inc. Jan. 2002
  61. Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127 https://doi.org/10.1021/ja00467a001
  62. Yang, D.-F.; Wilde, C. P.; Morin, M. Langmuir 1996, 12, 6570 https://doi.org/10.1021/la960365q
  63. Yang, D.-F.; Wilde, C. P.; Morin, M. Langmuir 1997, 13, 243 https://doi.org/10.1021/la960430w
  64. Fenter, P.; Eberhardt, A.; Liang, K. S.; Eisenberger, P. J. Chem. Phys. 1997, 106, 1600
  65. Schreiber, F. Prog. Surf. Sci. 2000, 65, 151 https://doi.org/10.1016/S0079-6816(00)00024-1
  66. Qu, D.; Morin, M. J. Electroanal. Chem. 2001, 517, 45 https://doi.org/10.1016/S0022-0728(01)00662-3
  67. Sumi, T.; Wano, H.; Uosaki, K. J. Electroanal. Chem. 2003, 550-551, 321 https://doi.org/10.1016/S0022-0728(03)00141-4
  68. Sumi, T.; Uosaki, K. J. Phys. Chem. B 2004, 108, 6422 https://doi.org/10.1021/jp049558+
  69. Borsari, M.; Cannio, M.; Gavioli, G. Electroanal. 2003, 15, 1192 https://doi.org/10.1002/elan.200390146
  70. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559 https://doi.org/10.1021/ja00246a011

Cited by

  1. Substitutional Self-Assembly of Alkanethiol and Selenol SAMs from a Lying-Down Doubly Tethered Butanedithiol SAM on Gold vol.115, pp.33, 2011, https://doi.org/10.1021/jp2042922
  2. Controlling the Stability and Reversibility of Micropillar Assembly by Surface Chemistry vol.133, pp.14, 2011, https://doi.org/10.1021/ja200241j
  3. Lying-Down to Standing-Up Transitions in Self Assembly of Butanedithiol Monolayers on Gold and Substitutional Assembly by Octanethiols vol.117, pp.9, 2013, https://doi.org/10.1021/jp3115786
  4. Influence of Thiol Molecular Backbone Structure on the Formation and Reductive Desorption of Self-Assembled Aromatic and Alicyclic Thiol Monolayers on Au(111) Surface vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1383
  5. Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry vol.9, pp.12, 2015, https://doi.org/10.1021/acsnano.5b05085
  6. 1,6-Hexanedithiol Self-Assembled Monolayers on Au(111) Investigated by Electrochemical, Spectroscopic, and Molecular Mechanics Methods vol.114, pp.1, 2009, https://doi.org/10.1021/jp908821b
  7. Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3407