DOI QR코드

DOI QR Code

Synthesis and Electro-optical Properties of π-Conjugated Polymer Based on 10-Hexylphenothiazine and Aromatic 1,2,4-Triazole

  • Choi, Ji-Young (Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University) ;
  • Kim, Dong-Han (Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University) ;
  • Lee, Bong (Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University) ;
  • Kim, Joo-Hyun (Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University)
  • Published : 2009.09.20

Abstract

New $\pi$-conjugated polymer with vinylene linkage, poly((10-hexyl-3,7-phenothiazine)-alt-(4-(4-butyl-phenyl)- 3,5-diphenyl-4H-[1,2,4]triazole)-3,5-vinylene) (PTV-TAZ) was synthesized by the Heck coupling reaction. The photoluminescence (PL) maximum wavelength and the band gap energy of PTV-TAZ film were 555 nm and 2.41 eV, respectively. The HOMO energy level of PTV-TAZ was -4.99 eV, which was slightly lower than that of PTV (-4.89 eV). Electron deficient aromatic 1,2,4-triazole (TAZ) in the polymer backbone does not affect the HOMO energy level significantly. The maximum efficiency and brightness of double layer structured electroluminescent (EL) device (ITO/PEDOT (30 nm)/PTV-TAZ (60 nm)/Al) were 0.247 cd/A and 553 cd/$m^2$, respectively, which were significantly higher than those of the device based PTV (1.65 ${\times}\;10^{-4}$ cd/A and 4.3 cd/$m^2$). This is due to that TAZ unit improves electron transporting ability in the emissive layer. The turn-on voltage (defined as the voltage required to give a luminescence of 1 cd/$m^2$) of brightness of the device based on PTV-TAZ was 12.0 V, which was similar to that the based on PTV (11.5 V). This is due to that the ionization potential of PTV-TAZ is very similar to that of PTV.

Keywords

References

  1. Heeger, A. J. Angew. Chem., Int. Ed. 2001, 40, 2591 https://doi.org/10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
  2. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature (London) 1999, 397, 121 https://doi.org/10.1038/16393
  3. Yu. G.; Heeger, A. J. J. Appl. Phys. 1995, 78, 4510 https://doi.org/10.1063/1.359792
  4. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature (London) 1995, 376, 498 https://doi.org/10.1038/376498a0
  5. Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Appl. Phys. Lett. 1996, 69, 4108 https://doi.org/10.1063/1.117834
  6. Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741 https://doi.org/10.1126/science.280.5370.1741
  7. Babel, A.; Jenekhe, S. A. Adv. Mater. 2002, 14, 371 https://doi.org/10.1002/1521-4095(20020304)14:5<371::AID-ADMA371>3.0.CO;2-5
  8. Babel, A.; Jenekhe, S. A. Macromolecules 2003, 36, 7759 https://doi.org/10.1021/ma034717t
  9. Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. Chem. Mater. 1998, 10, 2101 https://doi.org/10.1021/cm9801237
  10. Fungo, F.; Jenekhe, S. A.; Bard, A. J. Chem. Mater. 2003, 15, 1264 https://doi.org/10.1021/cm0210445
  11. Chen, Z.-K.; Meng, H.; Lai, Y.-H.; Huang, W. Macromolecules 1999, 32, 4351 https://doi.org/10.1021/ma981884y
  12. Kim, J. H.; Lee, H. Chem. Mater. 2002, 14, 2270 https://doi.org/10.1021/cm011553r
  13. Kim, J. H.; Park, J. H.; Lee, H. Chem. Mater. 2003, 15, 3414 https://doi.org/10.1021/cm034134y
  14. Kim, J. H.; Lee, H. Bull. Korean Chem. Soc. 2004, 25, 652 https://doi.org/10.5012/bkcs.2004.25.5.652
  15. Greenham, N. C.; Friend, R. H.; Bradly, D. D. C. Adv. Mater. 1994, 6, 491 https://doi.org/10.1002/adma.19940060612
  16. Choi, U.-S.; Kim, T.-W.; Jung, S.-W.; Kim, C.-J. Bull. Korean Chem. Soc. 1998, 19, 299
  17. Chen, S.-H.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4514 https://doi.org/10.1002/pola.21541
  18. Chen, S.-H.; Chen, Y.; Shiau, C.-S.; Tsai, C.-J. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 136 https://doi.org/10.1002/pola.21826
  19. Chen, S.-H.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2005, 4, 5803
  20. Kim, J. H.; Yoon, D. Y.; Kim, J. W.; Kim, J.-J. Synth. Met. 2007, 157, 743 https://doi.org/10.1016/j.synthmet.2007.08.001
  21. Lee, Y.-Z.; Chen, X.; Chen, S.-A.; Wei, P.-K.; Fann, W.-S. J. Am. Chem. Soc. 2001, 123, 2296 https://doi.org/10.1021/ja003135d
  22. Kim, J. H.; Lee, H. Synth. Met. 2003, 139, 471 https://doi.org/10.1016/S0379-6779(03)00201-7
  23. Kim, J. H.; Lee, H. Synth. Met. 2004, 143, 13 https://doi.org/10.1016/j.synthmet.2003.09.023
  24. Kim, J. H.; Lee, H. Synth. Met. 2004, 144, 169 https://doi.org/10.1016/j.synthmet.2004.02.017
  25. Jenekhe, S. A.; Lu, L. D.; Alam, M. M. Macromolecules 2001, 34, 7315 https://doi.org/10.1021/ma0100448
  26. Wu, T.-Y.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4452 https://doi.org/10.1002/pola.10530
  27. Wu, T.-Y.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4570 https://doi.org/10.1002/pola.10541
  28. Tang, W.; Kietzke, T.; Vemulamada, P.; Chen, Z.-K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 5266 https://doi.org/10.1002/pola.22271
  29. Kong, X.; Kulkarni, P.; Jenekhe, S. A. Macromolecules 2003, 36, 8992. https://doi.org/10.1021/ma035087y
  30. Zhu, D.-R.; Zhu, X.; Xu, L.; Shao, S.; Raj, S. S. S.; Fun, H.-K.; You, X. J. Chem. Crystallogr. 2000, 30, 429 https://doi.org/10.1023/A:1009542208264
  31. Zhu, D.-R.; Song, Y.; Xu, Y.; Zhang, Y.; Raj, S. S. S.; Fun, H.-K.; You, X.-Z. Polyhedron 2000, 19, 2019 https://doi.org/10.1016/S0277-5387(00)00501-5

Cited by

  1. Improved OPV Efficiency of Fluorene-Thiophene-Based Copolymers with Hole- and Electron-Transporting Units in the Main Chain vol.538, pp.1, 2011, https://doi.org/10.1080/15421406.2011.563709
  2. Synthesis and Characterization of Carbazole-Benzothiadiazole-Based Conjugated Polymers for Organic Photovoltaic Cells with Triazole in the Main Chain vol.2013, pp.1687-529X, 2013, https://doi.org/10.1155/2013/607826
  3. Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1068
  4. Synthesis, characterization, photophysical properties, and computational studies on N-hexylphenothiazine/cyanopyridine based π-conjugated copolymers vol.33, pp.6, 2009, https://doi.org/10.1177/0954008320988757