DOI QR코드

DOI QR Code

Microstructural Characterization and Dielectric Properties of Barium Titanate Solid Solutions with Donor Dopants

  • Kim, Yeon-Jung (Department of Applied Physics, Dankook University) ;
  • Hyun, June-Won (Department of Applied Physics, Dankook University) ;
  • Kim, Hee-Soo (Department of Applied Physics, Dankook University) ;
  • Lee, Joo-Ho (Department of Applied Physics, Dankook University) ;
  • Yun, Mi-Young (Department of Applied Physics, Dankook University) ;
  • Noh, S.J. (Department of Applied Physics, Dankook University) ;
  • Ahn, Yong-Hyun (Department of Chemistry, GRRC, Dankook University)
  • Published : 2009.06.20

Abstract

The correlation between the sintering temperature and dielectric properties in the $Nb^{5+}\;and\;Ta^{5+}$ doped BaTi$O_3$ solid solutions have been investigated. The samples were sintered at temperatures ranging from 1250 to 1350 ${^{\circ}C}$ for 4 h in air. SEM, XRD and SEM/EDS techniques were used to examine the structure of the samples with particular focus on the incorporation of $Nb^{5+}\;and\;Ta^{5+}$ ions into the BaTi$O_3$ crystal lattice. The X-ray diffraction peaks of (111), (200) and (002) planes of BaTi$O_3$ solid solution doped with different fractions of $Nb^{5+}\;and\;Ta^{5+}$ were investigated. The dielectric properties were analyzed and the relationship between the properties and structure of doped BaTi$O_3$ was established. The fine-grain and high density of the doped BaTi$O_3$ ceramics resulted in excellent dielectric properties. The dielectric properties of this solid solutions were improved by adding a small amount of dopants. The transition temperature of the 1.0 mole% $Ta^{5+}$ doped BaTi$O_3$ solid solution was $\sim$110 ${^{\circ}C}$ with a dielectric constant of 3000 at room temperature. At temperatures above the Curie temperatures, the dielectric constant followed the Curie-Weiss law.

Keywords

References

  1. Moulson, A. J.; Herbert, J. M. Electroceramics; Wiley Press: New York, 2003.
  2. Uchino, K. Ferroelectric Devices; Marcel Dekker, Inc.: New York, 2000.
  3. Kay, H. F.; Vousden, P. Phil. Mag. 1949, 40, 1019. https://doi.org/10.1080/14786444908561371
  4. Devonshire, A. F. Phil. Mag. 1949, 40, 1040 https://doi.org/10.1080/14786444908561372
  5. Devonshire, A. F. Phil. Mag. 1951, 42, 1065. https://doi.org/10.1080/14786445108561354
  6. Buchanan, R. C. Ceramic Materials for Electronics Processing, Properties, and Applications; Marcel Dekker Inc.: 1991.
  7. Lines, M. E.; Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials; Clarendon Press: Oxford, 1977. https://doi.org/10.1111/j.1151-2916.2004.tb07729.x
  8. Makovec, D.; Samardzijia, Z.; Drofenik, M. J. Am. Ceram. Soc. 2004, 87, 1324. https://doi.org/10.1111/j.1151-2916.2004.tb07729.x
  9. Mitic, V.; Paunovic, V.; Zivkovic, L.; Stojanovic, B. Proc. of Sintering 2003; Pennsylvania, 2003; p 757. https://doi.org/10.1107/S0909049598018135
  10. Frenkel, M.; Frey, M. H.; Payne, D. A. J. Synshrotron Rad. 1999, 6, 515. https://doi.org/10.1107/S0909049598018135
  11. Mitic, V.; Paunovic, V.; Vracar, L.; Zivkovic, L. Transactions of the Materials Research Society of Japan, 2004, 29(4), 1163. https://doi.org/10.1119/1.1374251
  12. Trainer, M. Am. J. Phys. 2001, 69(9), 966. https://doi.org/10.1119/1.1374251
  13. Chiang, S. K.; Lee, W. E.; Readey, D. W. Am. Ceram. Bull. 1987, 66(8), 1230.
  14. Vittayakorn, N. J. Appl. Sci. Res. 2006, 2(12), 1319.

Cited by

  1. Dielectric behavior of perovskite glass ceramics vol.25, pp.12, 2014, https://doi.org/10.1007/s10854-014-2311-6
  2. Characterization of $${\hbox {BaTiO}_{3}}$$ BaTiO 3 piezoelectric perovskite material for multilayer actuators vol.40, pp.4, 2017, https://doi.org/10.1007/s12034-017-1406-0
  3. Processing and characterization of calcined and sintered niobium doped barium titanate vol.506, pp.1, 2017, https://doi.org/10.1080/00150193.2017.1282285
  4. Effect of Sintering Parameters and Ta2O5 Doping on the Microstructure and Dielectric Properties of BaTiO3 Based Ceramics vol.608, pp.1662-9795, 2014, https://doi.org/10.4028/www.scientific.net/KEM.608.247
  5. Structure and Electrical Properties of BNKT-Based Ceramics vol.283, pp.1662-9779, 2018, https://doi.org/10.4028/www.scientific.net/SSP.283.147
  6. Enhanced Dielectric Properties of Tantalum Oxide Doped Barium Titanate based Ceramic Materials vol.56, pp.None, 2009, https://doi.org/10.1016/j.proeng.2013.03.191
  7. Effect of Different Weight Fraction on Dielectric Properties of Barium Ferrite-Barium Titanate Composites vol.431, pp.1, 2009, https://doi.org/10.1088/1742-6596/431/1/012007
  8. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics vol.34, pp.None, 2009, https://doi.org/10.1016/j.ultsonch.2016.07.027
  9. Effects of Nb5+ Addition on Microstructure and Dielectric Properties of BaTiO3 vol.26, pp.5, 2009, https://doi.org/10.5757/asct.2017.26.5.143
  10. Preparation of BaTiO3/Poly(vinylidene fluoride) 0-3 Composite Films for Dielectric Applications vol.13, pp.4, 2009, https://doi.org/10.5370/jeet.2018.13.4.1692
  11. Electrical and mechanical properties of bismuth sodium potassium titanate doped with a modified barium titanate lead-free ceramics vol.552, pp.1, 2009, https://doi.org/10.1080/00150193.2019.1653079
  12. Dielectric Properties of BaTiO3 Substituted with Donor Dopants of Nb5+ and Ta5+ vol.54, pp.4, 2009, https://doi.org/10.5695/jkise.2021.54.4.178