DOI QR코드

DOI QR Code

Synthesis of Mesoporous TS-1 for Catalytic Oxidative Desulfurization

  • Park, Chul-Woo (Department of Chemical Engineering, Inha University) ;
  • Kim, Tae-Kyung (Department of Chemical Engineering, Inha University) ;
  • Ahn, Wha-Seung (Department of Chemical Engineering, Inha University)
  • Published : 2009.08.20

Abstract

Mesoporous TS-1 catalysts were prepared via a nanocasting route using two different carbon template sources of CMK-3 and commercial carbon black. Products were characterized by XRD, UV-Vis spectroscopy, SEM, TEM, and $N_2$ adsorption- desorption measurement. The catalytic performances of the samples for allylchloride epoxidation and oxidative desulfurization of the representative refractory sulfur compounds, dibenzothiophene and 4,6-dimethyldibenzothiophene, were compared against those of conventional TS-1. Whilst the allychloride epoxidation activity for the mesoporus TS-1 samples were similar, mesoporous TS-1 exhibited significantly higher catalytic activities than conventional TS-1 in oxidative desulfurization.

Keywords

References

  1. US EPA, regulatory announcement: Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements, December 2000
  2. Liotta, F. J.; Han, Y. Z. Production of Ultra-Low Sulfur Fuels by Selective Hydroperoxide Oxidation; NPRA AM-03-23, Washington, DC, March 23-25, 2003
  3. R$\ddot{o}$thlishberger, A.; Prins, R. J. Catal. 2005, 235, 229 https://doi.org/10.1016/j.jcat.2005.08.007
  4. L$\ddot{u}$, H.; Gao, J.; Jiang, Z.; Jing, F.; Yang, Y.; Wang, G.; Li, C. J. Catal. 2006, 239, 369 https://doi.org/10.1016/j.jcat.2006.01.025
  5. Palomeque, J.; Clacens, J. M.; Figueras, F. J. Catal. 2002, 211, 103 https://doi.org/10.1016/S0021-9517(02)93721-8
  6. Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W. Energy Fuels 2000, 14, 1232 https://doi.org/10.1021/ef000096i
  7. Jeong, K. E.; Chae, H. J.; Kim, U. C.; Jeong, S. Y.; Ahn, W. S. Solid State Phenom. 2008, 135, 89 https://doi.org/10.4028/www.scientific.net/SSP.135.89
  8. Hulea, V.; Fajula, F.; Bousquet, J. J. Catal. 2001, 198, 179 https://doi.org/10.1006/jcat.2000.3149
  9. Kong, L.; Li, G.; Wang, X. Catal. Today 2004, 93, 341 https://doi.org/10.1016/j.cattod.2004.06.016
  10. Jin, C.; Li, G.; Wang, X.; Wang, Y.; Zhao, L.; Sun, D. Microporous Mesoporous Mater. 2008, 111, 236 https://doi.org/10.1016/j.micromeso.2007.07.037
  11. Kong, L.; Li, G.; Wang, X. Catal. Lett. 2004, 92, 163 https://doi.org/10.1023/B:CATL.0000014340.08449.d0
  12. Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. J. Am. Chem. Soc. 2000, 122, 7116 https://doi.org/10.1021/ja000744c
  13. Kustova, M. Y.; Hasselriis, P.; Christensen, C. H. Catal. Lett. 2004, 96, 205 https://doi.org/10.1023/B:CATL.0000030122.37779.f4
  14. Wei, X.; Smirniotis, P. G. Microporous Mesoporous Mater. 2006, 89, 170 https://doi.org/10.1016/j.micromeso.2005.09.030
  15. Egeblad, K.; Kustova, M.; Klitgaard, S. K.; Zhu, K.; Christensen, C. H. Microporous Mesoporous Mater. 2007, 101, 214 https://doi.org/10.1016/j.micromeso.2006.11.001
  16. Schmidt, I.; Krogh, A.; Wienberg, K.; Carlsson, A.; Brorson, M.; Jacobsen, C. J. H. Chem. Commun. 2000, 2157
  17. Fang, Y.; Hu, H. Catal. Commun. 2007, 8, 817 https://doi.org/10.1016/j.catcom.2006.09.018
  18. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024 https://doi.org/10.1021/ja974025i
  19. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712 https://doi.org/10.1021/ja002261e
  20. Serrano, D. P.; Uguina, M. A.; Ovejero, G.; Grieken, R. V.; Camacho, M. Microporous Mater. 1996, 7, 30
  21. On, D. T.; Lutic, D.; Kaliaguine, S. Microporous Mesoporous Mater. 2001, 44, 435 https://doi.org/10.1016/S1387-1811(01)00218-9
  22. Daage, M.; Chianelli R. R. J. Catal. 1994, 149, 414 https://doi.org/10.1006/jcat.1994.1308
  23. Meng, X.; Wu, Y.; Li, Y. J. Porous Mater. 2006, 13, 365 https://doi.org/10.1007/s10934-006-8032-3

Cited by

  1. Polymer-Based Spherical Activated Carbons in Combination with TS-1 as Efficient Epoxidation Catalysts vol.38, pp.9, 2015, https://doi.org/10.1002/ceat.201500366
  2. Polymerbasierte sphärische Aktivkohlen in Kombination mit TS-1 als effiziente Epoxidierungskatalysatoren vol.87, pp.10, 2015, https://doi.org/10.1002/cite.201400179
  3. Preparation of tungstophosphoric acid/cerium-doped NH2-UiO-66 Z-scheme photocatalyst: a new candidate for green photo-oxidation of dibenzothiophene and quinoline using molecular oxygen as t vol.45, pp.24, 2021, https://doi.org/10.1039/d1nj00328c
  4. Synthesis of titanium silicalite‐1 with high titanium content and its catalytic performance of propylene epoxidation vol.99, pp.suppl1, 2009, https://doi.org/10.1002/cjce.23997