DOI QR코드

DOI QR Code

Isolation of RNA Aptamers Targeting HER-2-overexpressing Breast Cancer Cells Using Cell-SELEX

  • Kang, Hye-Suk (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Huh, Yong-Min (Department of Radiology & Department of Biochemistry and Molecular Biology, Yonsei University) ;
  • Kim, So-Youn (Department of Biomedical Engineering, Dongguk University) ;
  • Lee, Dong-ki (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University)
  • Published : 2009.08.20

Abstract

Ligand molecules that can recognize and interact with cancer cell surface marker proteins with high affinity and specificity should greatly aid the development of novel cancer diagnostics and therapeutics. HER-2/ErbB2/Neu (HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves as both a useful biomarker and a therapeutic target for breast cancer. In this study, we aimed to isolate RNA aptamers that specifically bind to a HER-2-overexpressing human breast cancer cell line, SK-BR-3, using Cell-SELEX strategy. The selected aptamers showed strong affinity to SK-BR-3, but not to MDAMB- 231, a HER-2-underexpressing breast cancer cell line. In addition, we confirmed the specific targeting of HER-2 receptor by aptamers using an unrelated mouse cell line overexpressing human HER-2 receptor. The HER-2-targeting RNA aptamers could become a useful reagent for the development of breast cancer diagnostics and therapeutics.

Keywords

References

  1. Shangguan, D.; Cao, Z.; Meng, L.; Mallikaratchy, P.; Sefah, K.; Wang, H.; Li, Y.; Tan, W. J. Proteome Res. 2008, 7, 2133 https://doi.org/10.1021/pr700894d
  2. Roskoski, R., Jr. Biochem. Biophys. Res. Commun. 2004, 319, 1 https://doi.org/10.1016/j.bbrc.2004.04.150
  3. Xia, W.; Bisi, J.; Strum, J.; Liu, L.; Carrick, K.; Graham, K. M.; Treece, A. L.; Hardwicke, M. A.; Dush, M.; Liao, Q.; Westlund, R. E.; Zhao, S.; Bacus, S.; Spector, N. L. Cancer Res. 2006, 66, 1640 https://doi.org/10.1158/0008-5472.CAN-05-2000
  4. Tolmachev, V. Curr. Pharm. Des. 2008, 14, 2999 https://doi.org/10.2174/138161208786404290
  5. Chiu, S. J.; Ueno, N. T.; Lee, R. J. J. Control. Release 2004, 97, 357 https://doi.org/10.1016/j.jconrel.2004.03.019
  6. Nimjee, S. M.; Rusconi, C. P.; Sullenger, B. A. Annu. Rev. Med. 2005, 56, 555 https://doi.org/10.1146/annurev.med.56.062904.144915
  7. Dua, P.; Kim, S.; Lee, D. K. Recent Pat. DNA Gene Seq. 2008, 2, 172 https://doi.org/10.2174/187221508786241710
  8. Tuerk, C.; Gold, L. Science 1990, 249, 505 https://doi.org/10.1126/science.2200121
  9. Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818 https://doi.org/10.1038/346818a0
  10. Robertson, D. L.; Joyce, G. F. Nature 1990, 344, 467 https://doi.org/10.1038/344467a0
  11. Hicke, B. J.; Stephens, A. W. J. Clin. Invest. 2000, 106, 923 https://doi.org/10.1172/JCI11324
  12. Yigit, M. V.; Mazumdar, D.; Kim, H. K.; Lee, J. H.; Odintsov, B.; Lu, Y. Chembiochem 2007, 8, 1675 https://doi.org/10.1002/cbic.200700323
  13. White, R. R.; Sullenger, B. A.; Rusconi, C. P. J. Clin. Invest. 2000, 106, 929 https://doi.org/10.1172/JCI11325
  14. Cerchia, L.; Duconge, F.; Pestourie, C.; Boulay, J.; Aissouni, Y.; Gombert, K.; Tavitian, B.; de Franciscis, V.; Libri, D. PLoS Biol. 2005, 3, e123 https://doi.org/10.1371/journal.pbio.0030123
  15. Shangguan, D.; Meng, L.; Cao, Z. C.; Xiao, Z.; Fang, X.; Li, Y.; Cardona, D.; Witek, R. P.; Liu, C.; Tan, W. Anal. Chem. 2008, 80, 721 https://doi.org/10.1021/ac701962v
  16. Faltus, T.; Yuan, J.; Zimmer, B.; Kramer, A.; Loibl, S.; Kaufmann, M.; Strebhardt, K. Neoplasia 2004, 6, 786 https://doi.org/10.1593/neo.04313
  17. Bunka, D. H.; Stockley, P. G. Nat. Rev. Microbiol. 2006, 4, 588 https://doi.org/10.1038/nrmicro1458
  18. Shi, H.; Hoffman, B. E.; Lis, J. T. Proc. Natl. Acad. Sci. USA 1999, 96, 10033 https://doi.org/10.1073/pnas.96.18.10033

Cited by

  1. Gold Nano-Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells vol.3, pp.9, 2011, https://doi.org/10.1021/am2004366
  2. Methods To Identify Aptamers against Cell Surface Biomarkers vol.4, pp.12, 2011, https://doi.org/10.3390/ph4091216
  3. Generation of an enriched pool of DNA aptamers for an HER2-overexpressing cell line selected by Cell SELEX vol.58, pp.4, 2011, https://doi.org/10.1002/bab.36
  4. A gold nanocage–CNT hybrid for targeted imaging and photothermal destruction of cancer cells vol.48, pp.53, 2012, https://doi.org/10.1039/c2cc32313c
  5. Multifunctional Plasmonic Shell–Magnetic Core Nanoparticles for Targeted Diagnostics, Isolation, and Photothermal Destruction of Tumor Cells vol.6, pp.2, 2012, https://doi.org/10.1021/nn2045246
  6. Theranostic Magnetic Core–Plasmonic Shell Star Shape Nanoparticle for the Isolation of Targeted Rare Tumor Cells from Whole Blood, Fluorescence Imaging, and Photothermal Destruction of Cancer vol.10, pp.3, 2013, https://doi.org/10.1021/mp300468q
  7. Cu-Immuno-Positron Emission Tomography vol.24, pp.8, 2013, https://doi.org/10.1021/bc400192a
  8. Extremely High Two-Photon Absorbing Graphene Oxide for Imaging of Tumor Cells in the Second Biological Window vol.5, pp.12, 2014, https://doi.org/10.1021/jz5009856
  9. Aptamer-Conjugated Graphene Oxide Membranes for Highly Efficient Capture and Accurate Identification of Multiple Types of Circulating Tumor Cells vol.26, pp.2, 2015, https://doi.org/10.1021/bc500503e
  10. Biomimetic sensor design vol.7, pp.44, 2015, https://doi.org/10.1039/C5NR05226B
  11. Aptamer application in targeted delivery systems for diagnosis and treatment of breast cancer vol.4, pp.48, 2016, https://doi.org/10.1039/C6TB02564A
  12. Designing a multicolor long range nanoscopic ruler for the imaging of heterogeneous tumor cells vol.8, pp.28, 2016, https://doi.org/10.1039/C6NR02444K
  13. Improved Aptamers for the Diagnosis and Potential Treatment of HER2-Positive Cancer vol.9, pp.2, 2016, https://doi.org/10.3390/ph9020029
  14. Aptamer selection and applications for breast cancer diagnostics and therapy vol.15, pp.1, 2017, https://doi.org/10.1186/s12951-017-0311-4
  15. Potential Diagnostic and Therapeutic Applications of Oligonucleotide Aptamers in Breast Cancer vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091851
  16. Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures vol.22, pp.12, 2017, https://doi.org/10.3390/molecules22122070
  17. Aptamer-functionalized nano/micro-materials for clinical diagnosis: isolation, release and bioanalysis of circulating tumor cells vol.9, pp.3, 2017, https://doi.org/10.1039/C6IB00239K
  18. Selection of Nucleic Acid Aptamers Targeting Tumor Cell-Surface Protein Biomarkers vol.9, pp.6, 2017, https://doi.org/10.3390/cancers9060069
  19. Detection and Characterization of Cancer Cells and Pathogenic Bacteria Using Aptamer-Based Nano-Conjugates vol.14, pp.10, 2014, https://doi.org/10.3390/s141018302
  20. Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review vol.10, pp.2, 2018, https://doi.org/10.3390/cancers10020047
  21. Multifunctional Oval-Shaped Gold-Nanoparticle-Based Selective Detection of Breast Cancer Cells Using Simple Colorimetric and Highly Sensitive Two-Photon Scattering Assay vol.4, pp.3, 2009, https://doi.org/10.1021/nn901742q
  22. Development of Worm-like Polymeric Drug Carriers with Multiple Ligands for Targeting Heterogeneous Breast Cancer Cells vol.31, pp.8, 2009, https://doi.org/10.5012/bkcs.2010.31.8.2265
  23. Kinetic analysis of RNA interference for lamin A/C in HeLa cells vol.42, pp.9, 2009, https://doi.org/10.1093/abbs/gmq068
  24. Alkaline Phosphatase ALPPL-2 Is a Novel Pancreatic Carcinoma-Associated Protein vol.73, pp.6, 2013, https://doi.org/10.1158/0008-5472.can-12-3682
  25. Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell vol.20, pp.4, 2014, https://doi.org/10.1002/chem.201303306
  26. Targeting cancer cells using aptamers: cell-SELEX approach and recent advancements vol.5, pp.16, 2009, https://doi.org/10.1039/c4ra12407c
  27. Sulforaphane regulates apoptosis- and proliferation-related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer vol.42, pp.5, 2009, https://doi.org/10.3892/ijmm.2018.3860
  28. Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications vol.1869, pp.2, 2018, https://doi.org/10.1016/j.bbcan.2018.03.003
  29. Nondestructive analysis of tumor-associated membrane protein MUC1 in living cells based on dual-terminal amplification of a DNA ternary complex vol.10, pp.10, 2009, https://doi.org/10.7150/thno.42951
  30. Emerging Designs of Electronic Devices in Biomedicine vol.11, pp.2, 2009, https://doi.org/10.3390/mi11020123
  31. Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells vol.8, pp.16, 2009, https://doi.org/10.1039/c9tb02457c
  32. Aptamer-Based Liquid Biopsy vol.3, pp.5, 2020, https://doi.org/10.1021/acsabm.9b01194
  33. Review-Aptamer-Based Electrochemical Sensing Strategies for Breast Cancer vol.168, pp.2, 2021, https://doi.org/10.1149/1945-7111/abe34d
  34. Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer vol.13, pp.3, 2021, https://doi.org/10.3390/polym13030341
  35. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery vol.47, pp.2, 2009, https://doi.org/10.1134/s1068162021020187
  36. Aptamer-Based Detection of Circulating Targets for Precision Medicine vol.121, pp.19, 2009, https://doi.org/10.1021/acs.chemrev.0c01140