References
- Shangguan, D.; Cao, Z.; Meng, L.; Mallikaratchy, P.; Sefah, K.; Wang, H.; Li, Y.; Tan, W. J. Proteome Res. 2008, 7, 2133 https://doi.org/10.1021/pr700894d
- Roskoski, R., Jr. Biochem. Biophys. Res. Commun. 2004, 319, 1 https://doi.org/10.1016/j.bbrc.2004.04.150
- Xia, W.; Bisi, J.; Strum, J.; Liu, L.; Carrick, K.; Graham, K. M.; Treece, A. L.; Hardwicke, M. A.; Dush, M.; Liao, Q.; Westlund, R. E.; Zhao, S.; Bacus, S.; Spector, N. L. Cancer Res. 2006, 66, 1640 https://doi.org/10.1158/0008-5472.CAN-05-2000
- Tolmachev, V. Curr. Pharm. Des. 2008, 14, 2999 https://doi.org/10.2174/138161208786404290
- Chiu, S. J.; Ueno, N. T.; Lee, R. J. J. Control. Release 2004, 97, 357 https://doi.org/10.1016/j.jconrel.2004.03.019
- Nimjee, S. M.; Rusconi, C. P.; Sullenger, B. A. Annu. Rev. Med. 2005, 56, 555 https://doi.org/10.1146/annurev.med.56.062904.144915
- Dua, P.; Kim, S.; Lee, D. K. Recent Pat. DNA Gene Seq. 2008, 2, 172 https://doi.org/10.2174/187221508786241710
- Tuerk, C.; Gold, L. Science 1990, 249, 505 https://doi.org/10.1126/science.2200121
- Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818 https://doi.org/10.1038/346818a0
- Robertson, D. L.; Joyce, G. F. Nature 1990, 344, 467 https://doi.org/10.1038/344467a0
- Hicke, B. J.; Stephens, A. W. J. Clin. Invest. 2000, 106, 923 https://doi.org/10.1172/JCI11324
- Yigit, M. V.; Mazumdar, D.; Kim, H. K.; Lee, J. H.; Odintsov, B.; Lu, Y. Chembiochem 2007, 8, 1675 https://doi.org/10.1002/cbic.200700323
- White, R. R.; Sullenger, B. A.; Rusconi, C. P. J. Clin. Invest. 2000, 106, 929 https://doi.org/10.1172/JCI11325
- Cerchia, L.; Duconge, F.; Pestourie, C.; Boulay, J.; Aissouni, Y.; Gombert, K.; Tavitian, B.; de Franciscis, V.; Libri, D. PLoS Biol. 2005, 3, e123 https://doi.org/10.1371/journal.pbio.0030123
- Shangguan, D.; Meng, L.; Cao, Z. C.; Xiao, Z.; Fang, X.; Li, Y.; Cardona, D.; Witek, R. P.; Liu, C.; Tan, W. Anal. Chem. 2008, 80, 721 https://doi.org/10.1021/ac701962v
- Faltus, T.; Yuan, J.; Zimmer, B.; Kramer, A.; Loibl, S.; Kaufmann, M.; Strebhardt, K. Neoplasia 2004, 6, 786 https://doi.org/10.1593/neo.04313
- Bunka, D. H.; Stockley, P. G. Nat. Rev. Microbiol. 2006, 4, 588 https://doi.org/10.1038/nrmicro1458
- Shi, H.; Hoffman, B. E.; Lis, J. T. Proc. Natl. Acad. Sci. USA 1999, 96, 10033 https://doi.org/10.1073/pnas.96.18.10033
Cited by
- Gold Nano-Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells vol.3, pp.9, 2011, https://doi.org/10.1021/am2004366
- Methods To Identify Aptamers against Cell Surface Biomarkers vol.4, pp.12, 2011, https://doi.org/10.3390/ph4091216
- Generation of an enriched pool of DNA aptamers for an HER2-overexpressing cell line selected by Cell SELEX vol.58, pp.4, 2011, https://doi.org/10.1002/bab.36
- A gold nanocage–CNT hybrid for targeted imaging and photothermal destruction of cancer cells vol.48, pp.53, 2012, https://doi.org/10.1039/c2cc32313c
- Multifunctional Plasmonic Shell–Magnetic Core Nanoparticles for Targeted Diagnostics, Isolation, and Photothermal Destruction of Tumor Cells vol.6, pp.2, 2012, https://doi.org/10.1021/nn2045246
- Theranostic Magnetic Core–Plasmonic Shell Star Shape Nanoparticle for the Isolation of Targeted Rare Tumor Cells from Whole Blood, Fluorescence Imaging, and Photothermal Destruction of Cancer vol.10, pp.3, 2013, https://doi.org/10.1021/mp300468q
- Cu-Immuno-Positron Emission Tomography vol.24, pp.8, 2013, https://doi.org/10.1021/bc400192a
- Extremely High Two-Photon Absorbing Graphene Oxide for Imaging of Tumor Cells in the Second Biological Window vol.5, pp.12, 2014, https://doi.org/10.1021/jz5009856
- Aptamer-Conjugated Graphene Oxide Membranes for Highly Efficient Capture and Accurate Identification of Multiple Types of Circulating Tumor Cells vol.26, pp.2, 2015, https://doi.org/10.1021/bc500503e
- Biomimetic sensor design vol.7, pp.44, 2015, https://doi.org/10.1039/C5NR05226B
- Aptamer application in targeted delivery systems for diagnosis and treatment of breast cancer vol.4, pp.48, 2016, https://doi.org/10.1039/C6TB02564A
- Designing a multicolor long range nanoscopic ruler for the imaging of heterogeneous tumor cells vol.8, pp.28, 2016, https://doi.org/10.1039/C6NR02444K
- Improved Aptamers for the Diagnosis and Potential Treatment of HER2-Positive Cancer vol.9, pp.2, 2016, https://doi.org/10.3390/ph9020029
- Aptamer selection and applications for breast cancer diagnostics and therapy vol.15, pp.1, 2017, https://doi.org/10.1186/s12951-017-0311-4
- Potential Diagnostic and Therapeutic Applications of Oligonucleotide Aptamers in Breast Cancer vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091851
- Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures vol.22, pp.12, 2017, https://doi.org/10.3390/molecules22122070
- Aptamer-functionalized nano/micro-materials for clinical diagnosis: isolation, release and bioanalysis of circulating tumor cells vol.9, pp.3, 2017, https://doi.org/10.1039/C6IB00239K
- Selection of Nucleic Acid Aptamers Targeting Tumor Cell-Surface Protein Biomarkers vol.9, pp.6, 2017, https://doi.org/10.3390/cancers9060069
- Detection and Characterization of Cancer Cells and Pathogenic Bacteria Using Aptamer-Based Nano-Conjugates vol.14, pp.10, 2014, https://doi.org/10.3390/s141018302
- Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review vol.10, pp.2, 2018, https://doi.org/10.3390/cancers10020047
- Multifunctional Oval-Shaped Gold-Nanoparticle-Based Selective Detection of Breast Cancer Cells Using Simple Colorimetric and Highly Sensitive Two-Photon Scattering Assay vol.4, pp.3, 2009, https://doi.org/10.1021/nn901742q
- Development of Worm-like Polymeric Drug Carriers with Multiple Ligands for Targeting Heterogeneous Breast Cancer Cells vol.31, pp.8, 2009, https://doi.org/10.5012/bkcs.2010.31.8.2265
- Kinetic analysis of RNA interference for lamin A/C in HeLa cells vol.42, pp.9, 2009, https://doi.org/10.1093/abbs/gmq068
- Alkaline Phosphatase ALPPL-2 Is a Novel Pancreatic Carcinoma-Associated Protein vol.73, pp.6, 2013, https://doi.org/10.1158/0008-5472.can-12-3682
- Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell vol.20, pp.4, 2014, https://doi.org/10.1002/chem.201303306
- Targeting cancer cells using aptamers: cell-SELEX approach and recent advancements vol.5, pp.16, 2009, https://doi.org/10.1039/c4ra12407c
- Sulforaphane regulates apoptosis- and proliferation-related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer vol.42, pp.5, 2009, https://doi.org/10.3892/ijmm.2018.3860
- Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications vol.1869, pp.2, 2018, https://doi.org/10.1016/j.bbcan.2018.03.003
- Nondestructive analysis of tumor-associated membrane protein MUC1 in living cells based on dual-terminal amplification of a DNA ternary complex vol.10, pp.10, 2009, https://doi.org/10.7150/thno.42951
- Emerging Designs of Electronic Devices in Biomedicine vol.11, pp.2, 2009, https://doi.org/10.3390/mi11020123
- Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells vol.8, pp.16, 2009, https://doi.org/10.1039/c9tb02457c
- Aptamer-Based Liquid Biopsy vol.3, pp.5, 2020, https://doi.org/10.1021/acsabm.9b01194
- Review-Aptamer-Based Electrochemical Sensing Strategies for Breast Cancer vol.168, pp.2, 2021, https://doi.org/10.1149/1945-7111/abe34d
- Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer vol.13, pp.3, 2021, https://doi.org/10.3390/polym13030341
- Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery vol.47, pp.2, 2009, https://doi.org/10.1134/s1068162021020187
- Aptamer-Based Detection of Circulating Targets for Precision Medicine vol.121, pp.19, 2009, https://doi.org/10.1021/acs.chemrev.0c01140