DOI QR코드

DOI QR Code

Kinetics Study of Malachite Green Fading in the Presence of TX-100, DTAB and SDS

  • Samiey, Babak (Department of Chemistry, Faculy of Science, Lorestan University) ;
  • Toosi, Ali Raoof (Department of Chemistry, Faculy of Science, Lorestan University)
  • Published : 2009.09.20

Abstract

The rate constants of alkaline fading of malachite green ($MG^+$) was measured in the presence of nonionic (TX-100), cationic (DTAB) and anionic (SDS) surfactants. This reaction was studied under pseudo-first-order conditions at 283∼303 K. The rate of fading reaction showed noticeable dependence on the electrical charge of the used surfactants. It was observed that the reaction rate constants were increased in the presence of TX-100 and DTAB and decreased in the presence of SDS. According to Hughs-Ingold rules for nucleophilic substitution reactions, the electric charge of MG/surfactant compound along with decrease in dielectric constant of $MG^+$ micro-environment in this compound varies the rate of fading reaction. Binding constants of surfactant molecules to $MG^+$ were calculated using cooperativity, pseudo-phase ion exchange and classical models and the related thermodynamic parameters were obtained by classical model. The results show that the binding of $MG^+$ to TX-100 is exothermic and binding of $MG^+$ to DTAB and SDS in some concentration ranges of the used surfactants is endothermic and in the other ones is exothermic.

Keywords

References

  1. Fendler, J. H.; Fendler, E. J.; Chang, S. A. J. Am. Chem. Soc. 1973, 95, 3273 https://doi.org/10.1021/ja00791a033
  2. Munoz, M.; Rodriguez, A.; Del Mar Graciani, M.; Moya, M. L. Int. J. Chem. Kinet. 2002, 34, 445 https://doi.org/10.1002/kin.10067
  3. Alessi, D. S.; Li, Z. Environ. Sci. Technol. 2001, 35, 3713 https://doi.org/10.1021/es010564i
  4. Jana, N. R.; Wang, Z. L.; Tarasankar, P. Langmuir 2000, 16, 2457 https://doi.org/10.1021/la990507r
  5. McNeill, V. F.; Patterson, J.; Wolfe, G. M.; Thornton, J. A. Atmos. Chem. Phys. 2006, 6, 1635 https://doi.org/10.5194/acp-6-1635-2006
  6. Murira, C. M.; Puncket, C.; Schinepp, H. C.; Khusid, B.; Akasy, I. A. Langmuir 2008, 24, 14269 https://doi.org/10.1021/la8024759
  7. Feng, J.; Zeng, Y.; Ma, C.; Cai, X.; Zhang, Q.; Tong, M.; Yu, B.; Xu, P. Appl. Envir. Microbiol. 2006, 72, 7390 https://doi.org/10.1128/AEM.01474-06
  8. Shin, M.; Choi, H.; Kim, D.; Beak, K. Desalination 2008, 223, 229 https://doi.org/10.1016/j.desal.2007.01.214
  9. Bravo-Diaz, C.; Pastoriza-Gallego, M. J.; Lasada-Barreiro, S.; Sanchez-Paz, V.; Fernandez-Alonso, A. Int. J. Chem. Kinet. 2008, 40, 301 https://doi.org/10.1002/kin.20320
  10. Gregory, P. Dye and Dye Intermediates: Encyclopedia of Chemical Technology; Kroschwitz, J. I., Ed.; Wiley: USA, 1993; vol. 8, p 544
  11. Duxbury, D. F. Chem. Rev. 1993, 93, 381 https://doi.org/10.1021/cr00017a018
  12. http://en.wikipedia.org/wiki/malachite_green
  13. Culp, S. J.; Beland, F. A. J. Am. Coll. Toxicol. 1996, 15, 249
  14. Soriyan, O.; Owagomi, O.; Ogunnigi, A. Acta Chim. Slov. 2008, 55, 613
  15. Olanrewaju, O.; Ige, J.; Soriyan, O.; Grace, O.; Segun Esan, O.; Olanrewaju, O. Acta Chim. Slov. 2007, 54, 370
  16. Albrizzio, J.; Archilla, J.; Rodulfo, T.; Cordes, E. H. J. Org. Chem. 1972, 37, 871 https://doi.org/10.1021/jo00971a013
  17. Samiey, B.; Alizadeh, K.; Moghaddasi, M., Mousavi, M. F.; Alizadeh, N. Bull. Korean Chem. Soc. 2004, 25, 726 https://doi.org/10.5012/bkcs.2004.25.5.726
  18. Ritchie, C. D. J. Am. Chem. Soc. 1975, 97, 1970 https://doi.org/10.1021/ja00840a070
  19. Ritchie, C. D.; Wright, D. J.; Huang, D. S.; Kamego, A. A. J. Am. Chem. Soc. 1975, 97, 1163 https://doi.org/10.1021/ja00838a034
  20. Huang, Z.; Gu, T. Colloids and Surfaces 1987, 28, 159 https://doi.org/10.1016/0166-6622(87)80181-6
  21. Parida, S. K.; Mishra, B. K. Colloids Surf. A 1998, 134, 249 https://doi.org/10.1016/S0927-7757(97)00114-3
  22. Samiey, B.; Alizadeh, K.; Mousavi, M. F.; Alizadeh, N. Bull. Korean Chem. Soc. 2005, 26, 384 https://doi.org/10.5012/bkcs.2005.26.3.384
  23. Caetano, W.; Tabak, M. J. Colloid Interface Sci. 2000, 225, 69 https://doi.org/10.1006/jcis.2000.6720
  24. Welti, R.; Mulikin, L. J.; Yoshimura, T.; Helmkamp, J. M. Biochemistry 1984, 23, 6086 https://doi.org/10.1021/bi00320a028
  25. Hughes, E. D. Trans Faraday Soc. 1941, 37, 603 https://doi.org/10.1039/tf9413700603
  26. Ingold, C. K. Structure and Mechanism in Organic Chemistry; Bell, London, 1993
  27. Chotipong, A.; Scamehorn, J. F.; Rirksomboon, T.; Chavadej, S.; Supaphol, P. Colloids Surf. A 2007, 297, 163 https://doi.org/10.1016/j.colsurfa.2006.10.043
  28. Rabiller-Baudry, M.; Paugam, L.; Bégion, L.; Delaunay, D.; Fernandez-Cruz, M.; Phina-Ziebin, C.; Laviades-Garcia de Guadiana, C.; Chaufer, B. esalination 2006, 191, 334
  29. Wang, C.; Wyn-Jones, E.; Sidhu, J.; Chiu Tam, K. Langmuir 2007, 23, 1635 https://doi.org/10.1021/la0625897
  30. Chakraborty, T.; Chakraborty, I.; Ghosh, S. Langmuir 2006, 22, 9905 https://doi.org/10.1021/la0621214
  31. Piszkiewicz, D. J. J. Am. Chem. Soc. 1976, 98, 3053 https://doi.org/10.1021/ja00426a083
  32. Piszkiewicz, D. J. J. Am. Chem. Soc. 1977, 99, 7695 https://doi.org/10.1021/ja00465a046
  33. Piszkiewicz, D. J. J. Am. Chem. Soc. 1977, 99, 1550 https://doi.org/10.1021/ja00447a044
  34. http://en.wikipedia.org/wiki/Hill_equation
  35. Mahta, M.; Sundari, L. B. T.; Raiana, K. C. Int. J. Chem. Kinet. 1996, 28, 637

Cited by

  1. Effects of Surfactants on the Rate of Chemical Reactions vol.2014, pp.2090-9071, 2014, https://doi.org/10.1155/2014/908476
  2. Kinetic exploration supplemented by spectroscopic and molecular docking analysis in search of the optimal conditions for effective degradation of malachite green vol.5, pp.48, 2015, https://doi.org/10.1039/C5RA04724B
  3. Preparation and malachite green adsorption behavior of polyurethane/chitosan composite foam vol.51, pp.4, 2015, https://doi.org/10.1177/0021955X14542538
  4. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium vol.90, pp.5, 2016, https://doi.org/10.1134/S0036024416050265
  5. Kinetics and thermodynamics of the reaction of iminodiacetate copper(II) complexes with 1,10-phenanthroline and 2,2′-bipyridine in aqueous, anionic, cationic and nonionic surfactants solutions vol.122, pp.2, 2017, https://doi.org/10.1007/s11144-017-1269-9
  6. Kinetics of brilliant green fading in the presence of TX-100, DTAB and SDS vol.101, pp.1, 2010, https://doi.org/10.1007/s11144-010-0208-9
  7. Effect of Cationic/Anionic Mixed Micelles on Reaction Kinetics of Alkaline Hydrolysis of Crystal Violet vol.31, pp.3, 2019, https://doi.org/10.14233/ajchem.2019.21701
  8. Adsorption of malachite green on silica gel: Effects of NaCl, pH and 2-propanol vol.184, pp.1, 2010, https://doi.org/10.1016/j.jhazmat.2010.08.101
  9. Removal of Malachite Green (MG) From Aqueous Solutions by Adsorption, Precipitation, and Alkaline Fading Using Talc vol.48, pp.7, 2009, https://doi.org/10.1080/01496395.2012.723100
  10. Micellar rate effects in the alkaline fading of crystal violet in the presence of various surfactants vol.201, pp.None, 2015, https://doi.org/10.1016/j.molliq.2014.11.013
  11. Removal of malachite green (MG) from aqueous solutions by adsorption, precipitation, and alkaline fading using talc: kinetic, thermodynamic, and column feasibility studies vol.56, pp.7, 2009, https://doi.org/10.1080/19443994.2014.951970
  12. Study on Thermodynamics and Kinetics of Association Interactions between Malachite Green and OP-10 in Aqueous Solutions vol.37, pp.2, 2009, https://doi.org/10.1080/01932691.2015.1039019
  13. Catalytic action of CTAB/KBr/C9OH micellar media on the basic hydrolysis of crystal violet vol.38, pp.6, 2017, https://doi.org/10.1080/01932691.2016.1207187
  14. Alkaline Hydrolysis of Methyl Decanoate in Surfactant-Based Systems vol.83, pp.14, 2018, https://doi.org/10.1021/acs.joc.8b00247
  15. Influence of Anions and Micelle and Submicellar Aggregates on the Alkaline Hydrolysis of Malachite Green: Tensiometric, Spectrophotometric, and Kinetic Investigations vol.124, pp.10, 2009, https://doi.org/10.1021/acs.jpcb.9b11936