DOI QR코드

DOI QR Code

2-Substitiuted Thio- and Amino-5,8-dimethoxy-1,4-naphthoquinones as a Novel Class of Acyl-CoA: Cholestrol Acyltransferase Inhibitors

  • Shen, Gui-Nan (College of Pharmacy, Chungnam National University) ;
  • Choi, Jung-Ho (Korea Research Institute of Biosciences and Biotechnology) ;
  • Gajulapati, Kondaji (School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Jee-Hyun (College of Pharmacy, Chungnam National University) ;
  • Kim, Young-Kook (Korea Research Institute of Biosciences and Biotechnology) ;
  • Rho, Mun-Chal (Korea Research Institute of Biosciences and Biotechnology) ;
  • Jung, Sang-Hun (College of Pharmacy, Chungnam National University) ;
  • Lee, Kyeong (Korea Research Institute of Biosciences and Biotechnology) ;
  • Han, Sung-Sik (School of Life Sciences and Biotechnology, Korea University) ;
  • Song, Gyu-Yong (College of Pharmacy, Chungnam National University) ;
  • Choi, Yong-Seok (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2009.05.20

Abstract

A series of 2-alkyl or 2-arylthio-5,8-dimethoxy-1,4-naphthoquinones (2-Thio-DMNQ, 5a-s) and 2-alkylamino-5,8- dimethoxy-1,4-naphthoquinones (2-Amino-DMNQ, 6a-k) was synthesized and evaluated for their ACAT inhibitory activities. Among them, the 2-dodecylthio-DMNQ 5l and 2-isobutylamidoundodecylthio-DMNQ 5r showed the most potent ACAT inhibitory activities with $IC_{50}$ value of 22.8 and 24.4 ${\mu}M$, respectively. In a structure-activity relationship study, 2-thio-DMNQs with side chains of carbon number 11 $\sim$ 15 exhibited significant ACAT inhibitory activities.

Keywords

References

  1. Meiner, V. L.; Cases, S.; Myers, H. M. et al. Proc. Natl. Acad. Sci. USA 1996, 93, 14041 https://doi.org/10.1073/pnas.93.24.14041
  2. Sucking, K. E.; Stange, E. F. J. Lipid Res. 1985, 26, 647
  3. Adameova, A.; Kuzelova, M.; Faberova, V.; Holub, P.; Svec, P. Triglycerides and Cholesterol Research; Welson, L. T., Ed.; Nova Science Publishers, Inc.: 2006; Chapter VII
  4. Ikenoya, M.; Yoshinaka, Y.; Kobayashi, H.; Kawamine, K.; Shibuya, K.; Sato, F.; Sawanobori, K.; Watanabe, T.; Miyazaki, A. Atherosclerosis 2007, 191, 290 https://doi.org/10.1016/j.atherosclerosis.2006.05.048
  5. Terasaka, N.; Miyazaki, A.; Kasanuki, N.; Ito, K.; Ubukata, N.; Koieyama, T.; Kitayama, K.; Tanimoto, T.; Maeda, N.; Inaba, T. Atherosclerosis 2007, 190, 239 https://doi.org/10.1016/j.atherosclerosis.2006.03.007
  6. Zamorano-Leon, J. J.; Fernandez-Sanchez, R.; Lopez Farre, A. J.; Lapuente-Tiana, L.; Alonso-Orgaz, S.; Sacristan, D.; Junquera, D.; Delhon, A.; Conesa, A.; Mateos-Caceres, P. J.; Macaya, C. J. Cardiovas. Pharm. 2006, 48, 128 https://doi.org/10.1097/01.fjc.0000246263.67515.6a
  7. Ross, R. New Engl. J. Med. 1999, 340, 115 https://doi.org/10.1056/NEJM199901143400207
  8. Stein, O.; Stein, Y. Atherosclerosis 2005, 178, 217 https://doi.org/10.1016/j.atherosclerosis.2004.10.008
  9. An, S.; Park, Y. D.; Paik, Y. K.; Jeong, T. S.; Lee, W. S. Bioorg. Med. Chem. Lett. 2007, 17, 1112 https://doi.org/10.1016/j.bmcl.2006.11.024
  10. Rho, M. C.; Lee, S. W.; Park, H. R.; Choi, J. H.; Kang, J. Y.; Kim, K.; Lee, H. S.; Kim, Y. K. Phytochem. 2007, 68, 899 https://doi.org/10.1016/j.phytochem.2006.11.025

Cited by

  1. Synthesis of organosoluble and fluorescent aromatic polyketones bearing 1,1′-binaphthyl units through Suzuki–Miyaura coupling polymerization vol.72, pp.11, 2015, https://doi.org/10.1007/s00289-015-1443-z
  2. The compound 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via reactive oxygen species-regulated mitogen-activated protein kinase, protein kinase B, and signal transducer and activator of transcription 3 signaling in human gast vol.79, pp.6, 2018, https://doi.org/10.1002/ddr.21442
  3. ChemInform Abstract: 2-Substituted Thio- and Amino-5,6-dimethoxy-1,4-naphthoquinones as a Novel Class of Acyl-CoA: Cholestrol Acyltransferase Inhibitors. vol.40, pp.39, 2009, https://doi.org/10.1002/chin.200939088
  4. 2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via ROS-mediated MAPK and STAT3 signaling pathway in human gastric cancer cells vol.31, pp.4, 2019, https://doi.org/10.1080/1120009x.2019.1610832