IR Absorption Property in Nano-thick Ir-inserted Nickel Silicides

이리듐이 첨가된 니켈실리사이드의 적외선 흡수 특성

  • Yoon, Kijeong (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul) ;
  • Han, Jeungjo (Department of Materials Science and Engineering, University of Seoul)
  • 윤기정 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 한정조 (서울시립대학교 신소재공학과)
  • Received : 2008.07.08
  • Published : 2008.11.25

Abstract

We fabricated thermally evaporated 10 nm-Ni/1 nm-Ir/(poly)Si films to investigate the energy saving property of silicides formed by rapid thermal annealing (RTA) at the temperature range of $300{\sim}1200^{\circ}C$ for 40 seconds. Moreover, we fabricated 100 nm-thick ITO/(poly)Si films with an rf-sputter as references. A transmission electron microscope (TEM) and an X-ray diffractometer were used to determine cross-sectional microstructure and phase changes. A UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were employed for near-IR and middle-IR absorbance. Through TEM analysis, we confirmed 20~65 nm-thick silicide layers formed on the single and polycrystalline silicon substrates. Ir-inserted nickel silicide on single crystalline substrate showed almost the same absorbance in near IR region as well as ITO, but Ir-inserted nickel silicide on polycrystalline substrate, which had the uniform absorbance in specific region, showed better absorbance in near IR region than ITO. The Ir-inserted nickel silicide on polycrystalline substrate particularly showed better absorbance in middle IR region than ITO. The results imply that nano-thick Ir-inserted nickel silicides may have excellent absorbing capacity in near-IR and middle-IR region.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. G. Makaka, E. L. Meyer, M. McPherson, Renewable Energy 33, 1959 (2008) https://doi.org/10.1016/j.renene.2007.11.014
  2. T. Stempel, M. Aggour, K. Skorupska, A. Munoz, Hans-Joachim Lewerenz, Electrochem. Communications. In Press (2008)
  3. B. Kongtragool, S. Wongwises, Solar Energy 82, 493 (2008) https://doi.org/10.1016/j.solener.2007.12.005
  4. S. Y. Cho, M J. Lee, M. S. Kim, S. R. Lee, Y. K. Kim, D. H. Lee, C. W. Lee, K. H. Cho, and J. H. Chung, J. Dermatological Sci., 50, 123 (2008) https://doi.org/10.1016/j.jdermsci.2007.11.009
  5. M. Nakazono, T. Hino, K. Zaitsu, J. Photochem. Photobio. A: Chem., 186, 99 (2007) https://doi.org/10.1016/j.jphotochem.2006.07.017
  6. IESNA, Lighting Handbook, 9th ed., p.152, IESNA, newyork (2000)
  7. C. K. Ji, Kor. Institute of Illuminating and elec. Installation Eng., 15, 1 (2001)
  8. A. Kondilis, E. Aperathitis, M. Modreanu, Thin Solid Films, In Press (2008)
  9. E. Hartmann, P. Boher, C. Defranoux, L. Jolivet, M. O. Martin, J. Luminescence 110, 407 (2004) https://doi.org/10.1016/j.jlumin.2004.08.039
  10. J. W. Mayer, and S. S. Lau, Electronic Materials Science : For Integrated Circuits in Si and GaAs, 1st ed., p.287-289, Macmillan Publishing Company, NewYork, U.S.A. (1990)
  11. D. B. Williams, and C. B. Carter, Transmission Electron Microscopy Basics, 1st ed., p.152-170, Plenum Press, NewYork, U.S.A. (1996)
  12. O. S. Song, K. J. Yoon, T. H. Lee, M. J. Kim, Kor. J. Mater. Res. 17, 4 (2007) https://doi.org/10.3740/MRSK.2007.17.4.207
  13. T. Nagatomo, Y. Maruta, O. Omoto, Thin Solid Films 192, 17 (1990) https://doi.org/10.1016/0040-6090(90)90475-S
  14. D. R. Askeland, The Science and Engineering of Materials, 3rd ed., p.32-34, PWS Publishing Company, Boston, USA (1994)