Simulation of Inhomogeneous Texture through the Thickness Direction during Hot Rolling Deformation in Strip Cast Al-5wt%Mg Alloy

박판 주조된 Al-5 wt%Mg 합금의 열간압연 시 두께방향 불균일 집합조직 시뮬레이션

  • Song, Young-Sik (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Kim, Byoung-Jin (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Kim, Hyoung-Wook (Korea Institute of Materials Science Research Station) ;
  • Kang, Seok-Bong (Korea Institute of Materials Science Research Station) ;
  • Choi, Shi-Hoon (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 송영식 (순천대학교 재료.금속공학과) ;
  • 김병진 (순천대학교 재료.금속공학과) ;
  • 김형욱 (한국기계연구원 부설 재료연구소) ;
  • 강석봉 (한국기계연구원 부설 재료연구소) ;
  • 최시훈 (순천대학교 재료.금속공학과)
  • Received : 2007.12.18
  • Published : 2008.03.22

Abstract

The inhomogeneous texture through the thickness direction can be developed during hot rolling deformation in aluminum alloy. In this study, the inhomogeneous texture evolution through the thickness direction during hot rolling deformation in Al-5 wt%Mg alloy produced by a new strip casting technology was measured experimentally. Macrotexture measurement was conducted using X-ray diffractometer. A finite element analysis with ABAQUS/StandardTM and rate sensitive polycrystal model were used to predict the evolution of hot rolling texture. The experimental results of Al-5 wt%Mg alloy were compared with calculated results. The shear texture components tend to be increased at the surface region of the hot-rolled specimen. It is found that triclinic sample symmetry is more accurate assumption for texture analysis and simulation in the surface region of hot-rolled aluminum alloy.

Keywords

Acknowledgement

Supported by : 재료연구소

References

  1. G. S. Cole and A. M. Sherman, Mater. Chara. 35, 3 (1995) https://doi.org/10.1016/1044-5803(95)00063-1
  2. G. B. Burger, A. K. Gupta, P. W. Jeffrey and D. J. Lloyd, Mater. Chara. 35, 23 (1995) https://doi.org/10.1016/1044-5803(95)00065-8
  3. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler and A. Vieregge, Mater. Sci. Eng. A280, 37 (2000)
  4. O. Engler and J. Hirsh. Mater. Sci. Eng. A336, 249 (2002)
  5. K. H. Kim and D. N. Lee, Acta mater. 49, 2583 (2001) https://doi.org/10.1016/S1359-6454(01)00036-2
  6. H. Utsunomiya, T. Ueno and T. Sakai, Scripta mater. 57, 1109 (2007) https://doi.org/10.1016/j.scriptamat.2007.08.024
  7. H. Jin and D. J. Lloyd, Master. Sci. Eng. A 399, 358 (2005)
  8. M. Y. Huh, K. R. Lee and O. Engler, Int. J. Plasti. 20, 1183 (2004) https://doi.org/10.1016/j.ijplas.2003.08.003
  9. C. G. Kang, H. G. Kang, H. C. Kim, M. Y. Huh and H. G. Suk, J. Mater. Proc. Tech. 187, 542 (2007) https://doi.org/10.1016/j.jmatprotec.2006.11.096
  10. O. Engler, M. Y. Huh and Tome, Metall. Mater. Trans. 31A, 2299 (2000)
  11. W. C. Liu, B. Radhakrishnan, Z. Li and J. G. Morris, Mater. Sci. Eng, A472, 170 (2008)
  12. J. Hirsch and K. Lücke, Acta Metall. 36, 2863 (1988) https://doi.org/10.1016/0001-6160(88)90172-1
  13. M. Y. Huh, J. C. Park and S. Lee, Metals and Materials. 2, 141 (1996) https://doi.org/10.1007/BF03026088
  14. S. H. Choi and K. H. Oh, Metals and Materials. 3, 252 (1997) https://doi.org/10.1007/BF03025932
  15. C. H. Choi, J. W. Kwon, K. H. Oh and D. N. Lee, Acta Mater. 45, 5119 (1997) https://doi.org/10.1016/S1359-6454(97)00169-9
  16. S. H. Choi, J. H. Cho, K. H. Oh, K. Chung and F. Barlat, Int. J. Mater. Sci. 42, 1571 (2000)
  17. S. H. Choi, J. C. Brem, F. Barlat and K. H. Oh, Acta Metal. 44, 587 (1996)
  18. W. C. Liu and J. G. Morris, Mater. Sci. Eng. A339, 183 (2003)
  19. H. W. Kim, C. Y. Lim and S. B. Kang, Adv. Mater. Res. 29- 30, 83 (2007) https://doi.org/10.4028/www.scientific.net/AMR.29-30.83
  20. T. Haga, M. Ikawa, H. Wtari and S. Kumai, J. Mater. Proc. Tech. 172, 271 (2006) https://doi.org/10.1016/j.jmatprotec.2005.10.007
  21. S. Matthies, J. Muller and G. W. Vinel, Textures and Microstructures. 10, 77 (1998)
  22. Hibbit, Karlsson and Sorensen, ABAQUS Standard User Manual, (1998)
  23. G. E. Dieter, Mechanical Metallurgy,3rd ed., p. 49, McGraw-Hill (1988)
  24. S. R. Kalidindi, C. A. Bronkhorst and L. Anand, J. Mech. Phys. Solids. 40, 537 (1992) https://doi.org/10.1016/0022-5096(92)80003-9
  25. S.-H. Choi, Y.S. Song, J.K. Kim, H.-W. Kim, and S.-B. Kang, Key Eng. Mater. 345-346, 89 (2007) https://doi.org/10.4028/www.scientific.net/KEM.345-346.89
  26. J. S. Kallend, U. F. Kocks, A. D. Rollett and H. R. Wenk, Mater. Sci. Eng. A132, 1 (1991)
  27. J. H. Cho, A. D. Rollett and K. H. Oh, Metall. Mater. Trans. 35A, 1075 (2004)