A Study on the Electronic Structures of Li Intercalated Vanadium Sulfide and Oxide

Li의 첨가에 따른 Vanadium의 유화물과 산화물의 전자상태계산에 관한 연구

  • Jung, Hyun-Chul (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Kim, Hui-Jin ;
  • Won, Dae-Hee (Korea Basic Science Institute Sunchun Branch) ;
  • Yoon, Dong-Joo (Cooperation Centered University, Sunchon National University) ;
  • Kim, Yang-Soo (Korea Basic Science Institute Sunchun Branch) ;
  • Kim, Byung-Il (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 정현철 (순천대학교 재료.금속공학과) ;
  • 김희진 (한국기초과학지원연구원 순천출장소) ;
  • 원대희 (순천대학교 산학협력중심대학) ;
  • 윤동주 (순천대학교 산학협력중심대학) ;
  • 김양수 (한국기초과학지원연구원 순천출장소) ;
  • 김병일 (순천대학교 재료.금속공학과)
  • Received : 2008.05.28
  • Published : 2008.09.25

Abstract

The layered compounds vanadium disulfide($VS_2$) and vanadium dioxide($VO_2$) intercalated with Li are investigated for using the Discrete Variational $(DV)-X{\alpha}$ molecular orbital method. The chemical bonding properties of the atoms were examined by bond overlap population of electronic states. The plot of density of states supports the covalent bonding properties by showing the overlap between the atoms. There is a strong tendency of covalent bonding between V-S and V-O. The intensity of covalent bonding of $VS_2$ is stronger than $VO_2$. The net charge of $LiVO_2$ is higher than that of $LiVS_2$. This results of the calculation of $VO_2$ and $VS_2$ indicate that $(DV)-X{\alpha}$ method can be widely applied in the new practical materials.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. D. K. G. de Boer, C. F. van Bruggen, G. W. Bus, R. Coehoorn, C. Haas, G. A. Sawatzky, H. W. Myron, D. Norman and H. Padmore, Phys. Rev. B., 12, 6707 (1982)
  2. J. V. McCanny, J. Phys. C., 12, 3263 (1979) https://doi.org/10.1088/0022-3719/12/16/014
  3. C. Umrigar, D. E. Ellis, D. S. Wang, H. Krakauer and M. Posternak, Phys. Rev. B., 26, 4935 (1982) https://doi.org/10.1103/PhysRevB.26.4935
  4. M. G. Bell and W. Y. Liang, Adv. Phys. 25, 53 (1976) https://doi.org/10.1080/00018737600101362
  5. Y. S. Kim, H. S. Park, M. C. Chang and Y. C. Jin, J. Kor. Inst. Met.& Mater. 38, 836 (2000)
  6. J. A. Wilson and A. D. Yoffe, Adv. Phys. 18, 193 (1969) https://doi.org/10.1080/00018736900101307
  7. J. A. Wilson, F. J. Di Salvo and S. Mahajan, Adv. Phys. 24, 117 (1975)
  8. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955) https://doi.org/10.1063/1.1740588
  9. D. E. Ellis, H. Adachi and F. W. Averill, Surf. Sci., 58, 496 (1976)
  10. H. Adachi, M. Tsukada and C. Satoko, J. Phys. Soc. Jpn., 45, 875 (1978) https://doi.org/10.1143/JPSJ.45.875
  11. R. Manzke and M. Skibowski, Landolt-Bornstein-Group III condensed Matter, p. 107, Springer-Verlag (1994)
  12. F. Levy, Intercalated Layered Materials, p. 213, Springer (1979)