Fabrication of 316L Stainless Steel having Low Contact Resistance for PEMFC Separator using Powder Metallurgy

분말야금법에 의한 고분자전해질 연료전지 분리판용 저접촉저항 316L 스테인리스강 복합소재 제조

  • 최준환 (한국기계연구원 부설 재료연구소 분말재료연구부) ;
  • 김명환 (자동차부품연구원 환경소재연구센터) ;
  • 김용진 (한국기계연구원 부설 재료연구소 분말재료연구부)
  • Received : 2008.08.14
  • Published : 2008.12.25

Abstract

Metal matrix composite (MMC) materials having low electrical contact resistance based on 316L stainless steel (STS) matrix alloy with $ZrB_2$ particles were fabricated for PEMFC (Polymer Electrolyte Membrane Fuel Cell) separator by powder metallurgy (PM). The effects of the boride particle addition into the matrix alloy on microstructure, surface morphology, and interfacial contact resistance (ICR) between the samples and gas diffusion layer (GDL) were investigated. Both conventional and PM 316L STS samples showed high ICR due to the existence of non-conductive passive film on the alloy surface. The addition of the boride particles, however, remarkably reduced ICR of the samples. SEM observation revealed that the boride particles were protruded out of the matrix surface and particle density existing on the surface increased with increasing the boride content, causing increase of the total contact area between the conductive particles and GDL. ICR of the samples also decreased with increasing the boride content resulted from the increased contact area.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. S. Basu ed. Recent Trends in Fuel Cell Science and Technology, p. 1-3, Springer, New Delhi (2007)
  2. S. J. C. Cleghorn, X. Ren, T. E. Springer, M. S. Wilson, C. Zawodzinski, T. A. Zawodzinski, and S. Gottesfeld, Int. J. Hydrogen Energy 22, 1137 (2002)
  3. J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed., p. 67-69, John Willey & Sons (2003)
  4. H. Tsuchiya and O. Kobayashi, Int. J. Hydrogen Energy 29, 985 (2004) https://doi.org/10.1016/j.ijhydene.2003.10.011
  5. X. Li and I. Sabir, Int. J. Hydrogen Energy 30, 359 (2004)
  6. J. S. Cooper, J. Power Sources 129, 152 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.037
  7. H. Tawfik, Y. Hung, and D. Mahajan, J. Power Sources 163, 755 (2007) https://doi.org/10.1016/j.jpowsour.2006.09.088
  8. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, J. Appl. Electrochem. 30, 101 (2000) https://doi.org/10.1023/A:1003831406406
  9. H. Wang, M. P. Brady, G. Teeter, and J. A. Turner, J. Power Sources 138, 86 (2004)
  10. Y. Tarutani, T. Doi, A. Seki, and S. Fukuta, Patent (USA) No. US6379476 B1 (2002)
  11. P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, J. Power Sources 80, 235 (1999) https://doi.org/10.1016/S0378-7753(98)00264-X
  12. D-G. Nam and H-C. Lee, J. Kor. Inst. Met. & Mater. 45, 135 (2007)
  13. S-H. Lee, J-H. Kim, M-C. Kim, D-H. Chun, and D-M Wee, J. Kor. Inst. Met. & Mater. 45, 44 (2007)
  14. P. W. Lee, et al. ed., ASM Handbook Vol.7 Powder metal technologies and application, p. 712, ASM International, Materials Park, OH, USA (1998)
  15. H. Wang, M. A. Sweikart, and J. A. Turner, J. Power Sources 115, 243 (2003) https://doi.org/10.1016/S0378-7753(03)00023-5
  16. M. L. Bauccio ed., ASM engineered materials reference book, 2nd ed., p.280, 303, 308-309, ASM International, Materials Park, OH, USA (1994)
  17. S. Balaji and A. Upadhyaya, Mater. Chem. Phys. 101, 310 (2007) https://doi.org/10.1016/j.matchemphys.2006.06.002