압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements

  • 박상규 (한국과학기술원 신소재공학과) ;
  • 김민철 (한국원자력연구원 원자력재료연구부) ;
  • 이봉상 (한국원자력연구원 원자력재료연구부) ;
  • 위당문 (한국과학기술원 신소재공학과)
  • 투고 : 2008.08.19
  • 발행 : 2008.12.25

초록

An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

키워드

과제정보

연구 과제번호 : 고강도/고인성 원자로용기강 및 밀림관 스테인리스강 개발

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. S. G. Druce, B.C. Edwards, Nucl. Energy 19, 347 (1980)
  2. B. Chapelle, Nucl. Energy 31, 417 (1992)
  3. K. Suzuki, I. Sato, H. Tsukada, Nucl. Eng. Design 151, 523 (1994) https://doi.org/10.1016/0029-5493(94)90193-7
  4. X. Z. Zhang, J. F. Knott, Acta Mater. 47, 3483 (1999) https://doi.org/10.1016/S1359-6454(99)00200-1
  5. Y. R. Im, Ph.D thesis, Seoul National University (2001)
  6. Y. R. Im, Y. J. Oh, B. J. Lee, J. H. Hong and H. C. Lee, J. Nucl. Mater. 297, 138 (2001) https://doi.org/10.1016/S0022-3115(01)00610-9
  7. A. P. Green and B. B. Hundy, J. Mech. Phys. Solids 4, 128 (1994)
  8. B. J. Lee, J. Kor. Inst. Met. Mater. 33, 766 (1995)
  9. C. H. Yoo, J. R. Soh, H. M. Lee and C. U. Kim, J. Kor. Inst. Met. Mater. 33, 1337 (1995)
  10. Research Report, KAERI, CM-785, p.19 (2004)
  11. L. A. Norstrom, Met. Sci. 429, 429 (1976)
  12. W. F. Smith, Metals and Materials, Interversion, Inc. (2003)
  13. S. H. Kim, Y. R. Im, S. H. Lee, H. C. Lee, Y. J. Oh and J. H. Hong, J. Kor. Inst. Met. Mater. 38, 771 (2000)
  14. J. Pilling and N. Ridley, Metall. Trans. A, 13A, 557 (1982)