Numerical Analysis on the Collision Behaviors of in-flight Droplets During Gas Atomization

가스 분무 시 비행 액적의 충돌 현상에 관한 수치적 고찰

  • Seok, Hyun Kwang (Advanced Functional Materials Research Center, Korea Institute of Science and Technology)
  • 석현광 (한국과학기술연구원 재료연구부 기능금속재료연구센터)
  • Received : 2008.06.09
  • Published : 2008.08.25

Abstract

Recently, it is exceedingly required to produce metal powders with tailored shape and phase altogether in order to fabricate high performance functional parts such as magnetic core or electro-magnetic noise suppressor for high frequency usage. Therefore, the collision phenomena of in-flight droplets against chamber wall or neighboring in-flight droplets each other is investigated by a computational method in order to get useful information about how to design the atomizing system and how to tailor process parameters not to make irregular-shaped powders during gas atomization process. As a results, smaller powders, lower melt temperature are known to be favorable for droplets not to collide against chamber wall. In additions, powders of narrower size distribution range, lower droplet generation rate, lower melt temperature, lower gas velocity are desirable to prevent droplet-collisions against neighboring in-flight droplets.

Keywords

Acknowledgement

Supported by : 한국과학기술연구원, 과학기술부

References

  1. P. W. Ho, Q. F. Li, J.Y.H. Fuh, Materials Science and Engineering: A 485, 657 (2008) https://doi.org/10.1016/j.msea.2007.10.048
  2. S. Ram, J. C. Joubert, Journal of Magnetism and Magnetic Materials 99, 133 (1991) https://doi.org/10.1016/0304-8853(91)90056-G
  3. C. Senderowski, Z. Bojar, Surface and Coatings Technology 202, 3538 (2008) https://doi.org/10.1016/j.surfcoat.2007.12.029
  4. H. K. Seok, K. Y. Kim, J. Kor. Inst. Met. & Mater. 44, 252 (2006)
  5. C. He, N. Zhao, Y. Han, J. Li, C. Shi, X. Du, Materials Science and Engineering: A 441, 266 (2006) https://doi.org/10.1016/j.msea.2006.08.072
  6. C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C.C.K. Lin, T.C. Wu, Sensors and Actuators B: Chemical 117, 367 (2006) https://doi.org/10.1016/j.snb.2005.11.021
  7. S. H. Hong, B. K. Kim, Z. A. Munir, Materials Science and Engineering: A 405, 325 (2005) https://doi.org/10.1016/j.msea.2005.06.015
  8. B. Huang, J. Fan, S. Liang, X. Qu, Journal of Materials Processing Technology 137, 177 (2003) https://doi.org/10.1016/S0924-0136(02)01090-7
  9. T. Itoi, T. Takamizawa, Y. Kawamura, A. Inoue, Scripta materialia 45, 1131 (2001) https://doi.org/10.1016/S1359-6462(01)01122-8
  10. P. Marin, M. Lopez, A. Garcia-Escorial, M. Lieblich, Materials science & engineering A 449/451, 414 (2007) https://doi.org/10.1016/j.msea.2006.02.454
  11. E. Y. Kang, Y. B. Kim, K. Y. Kim, Y. H. Chung, H. K. Baik, Journal of magnetism and magnetic materials 304, 182 (2006) https://doi.org/10.1016/j.jmmm.2006.01.155
  12. J. C. Baram, M. K. Veistinen, E. J. Lavernia, M. Abinante, N. J. Grant, Journal of materials science 23, 2457 (1988) https://doi.org/10.1007/BF01111903
  13. N. Zeoli, S. Gu, Computational Materials Science, available online, 2007
  14. P. Grant, B. Cantor, and L. Katgerman, Acta Metall. Mater. 41, 3097 (1993) https://doi.org/10.1016/0956-7151(93)90039-U
  15. J. Mi, R.S. Figliola, I. E. Anderson, Metall. & Mater. Trans. B 28, 935 (1997) https://doi.org/10.1007/s11663-997-0021-7
  16. E. S. Lee and S. Ahn, Acta Metall. Mater. 42, 3231 (1994) https://doi.org/10.1016/0956-7151(94)90421-9
  17. R. Clift, J. R. grace and M. E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, pp. 111-113 (1978)
  18. W. Ranz and W. Marshall, Chem. Engng Prg. 48, 141 (1952)
  19. E. A. Brandes, Smithell Metals Reference Book, 6th Ed. U.K., (1983)
  20. A. I. Aaitsev, N. E. zaitseva, A. A. Kodentsov, Metall. & Mater. Trans. B 34B, 887 (2003)