이차원 양자 효과를 고려한 극미세 Double-Gate MOSFET

2D Quantum Effect Analysis of Nanoscale Double-Gate MOSFET

  • 김지현 (이화여자대학교 전자공학과) ;
  • 손애리 (이화여자대학교 전자공학과) ;
  • 정나래 (이화여자대학교 전자공학과) ;
  • 신형순 (이화여자대학교 전자공학과)
  • Kim, Ji-Hyun (Department of electronic engineering, Ewha Womans University) ;
  • Son, Ae-Ri (Department of electronic engineering, Ewha Womans University) ;
  • Jeong, Na-Rae (Department of electronic engineering, Ewha Womans University) ;
  • Shin, Hyung-Soon (Department of electronic engineering, Ewha Womans University)
  • 발행 : 2008.10.25

초록

기존의 MOSFET는 단채널 현상의 증가로 인하여 스케일링에 한계를 가지고 있다. Double-Gate MOSFET (DG-MOSFET)는 소자의 길이가 축소되면서 나타나는 단채널 현상을 효과적으로 제어하는 차세대 소자이다. DG-MOSFET으로 소자를 축소시키면 채널 길이가 10nm 이하에서 게이트 방향뿐만 아니라 소스와 드레인 방향에서도 양자 효과가 발생한다. 또한 게이트 길이가 매우 짧아지면 ballistic transport 현상이 발생한다. 따라서 본 연구에서는 2차원 양자 효과와 ballistic transport를 고려하여 DG-MOSFET의 특성을 분석하였다. 또한 단채널 효과를 줄이기 위해서 $t_{si}$와 underlap 그리고 lateral doping gradient를 이용하여 소자 구조를 최적화하였다.

The bulk-planer MOSFET has a scaling limitation due to the short channel effect (SCE). The Double-Gate MOSFET (DG-MOSFET) is a next generation device for nanoscale with excellent control of SCE. The quantum effect in lateral direction is important for subthreshold characteristics when the effective channel length of DG-MOSFET is less than 10nm, Also, ballistic transport is setting important. This study shows modeling and design issues of nanoscale DG-MOSFET considering the 2D quantum effect and ballistic transport. We have optimized device characteristics of DG-MOSFET using a proper value of $t_{si}$ underlap and lateral doping gradient.

키워드

참고문헌

  1. F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, "Double-Gate Silicon-on- Insulator with Volume Inversion: A New Device with Greatly Enhanced Performance," IEEE Electron Device Letters, vol.8, no.9, pp. 410-412, Dep 1987 https://doi.org/10.1109/EDL.1987.26677
  2. T. Tanaka, H. Horie, S. Ando, and S. Hijiya, "Analysis of p+ Poly Si Double-Gate Thin-Film SOI MOSFETS," IEDM Tech. Digest, pp. 683-686, Dec 1991
  3. K. Suzuki and T. Sugii, "Analytical Models for $n^{+}$ -$p^{+}$ Double-Gate SOI MOSFET's," IEEE trans. on Electron Devices, vol. 42, no. 11, pp. 1940-1948, Nov 1995 https://doi.org/10.1109/16.469401
  4. Z. Ren, "Nanoscale MOSFETs: Physics, Simulation and Design," Purdue University, pp. 41-64, 2001
  5. S. Datta, "Nonoscale Device Modeling: the Green's function method," Superlattices and Microstructures, vol. 28, no. 4, pp. 253-278, July 2000 https://doi.org/10.1006/spmi.2000.0920
  6. J. Wang and M. Lundstrom, "Does Source-to-Drain Tunneling Limit the Ultimate Scaling of MOSFETs," IEDM Tech. Digest, pp. 707-710, San Francisco, USA., Dec 2002
  7. M. Bescond, J.L. Autran, D. Munteanu, N. Cavassilas, and M. Lannoo, "Atomic-scale Modeling of Source-to-Drain Tunneling in Ultimate Schottky Barrier Double-Gate MOSFET's", in Proc. of IEEE Conf. on ESSDERC, pp. 395-398, Estoril, Portugal., Sept 2003
  8. http://www.nanohub.org/
  9. R.S. Shenoy and K.C. Saraswat, "Optimization of Extrinsic Souce/Drain Resistance in Ultrathin Body Double-Gate FETs," IEEE trans. on Nanotechnology, vol. 2, no. 4, pp. 265-270, Dec 2003 https://doi.org/10.1109/TNANO.2003.820780
  10. A. Kranti and G.A. Armstrong, "Engineering Source/Drain Extension Regions in Nanoscale Double Gate (DG) SOI MOSFETs: Analytical Model and Design Considerations," Solid-State Electronics, vol. 50, no. 3, pp. 437-447, Mar 2006 https://doi.org/10.1016/j.sse.2006.02.012
  11. M.Y. Kwong, R. Kasnavi, P. Griffin, J.D. Plummer, and R.W. Dutton, "Impact of Lateral Souce/Drain Abruptness on Device Performance," IEEE trans. on Electron Devices, vol. 49, no. 11 pp. 1882-1890, Nov 2002 https://doi.org/10.1109/TED.2002.806790