DOI QR코드

DOI QR Code

Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics

기공형성제 크기 비(ratio)가 다공질 지르코니아 세라믹스의 기공율과 강도에 미치는 영향

  • Chae, Su-Ho (Department of Materials Science and Engineering, the University of Seoul) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, the University of Seoul) ;
  • Song, In-Hyuek (Powder Materials Research Division, Korea Institute of Materials Science(KIMS)) ;
  • Kim, Hai-Doo (Powder Materials Research Division, Korea Institute of Materials Science(KIMS)) ;
  • Bae, Ji-Soo (Young-Jin Ceramics Co., Ltd.)
  • Published : 2008.09.30

Abstract

Effect of template size ratio on porosity and mechanical properties of porous zirconia ceramics were investigated using two different size (${\sim}8{\mu}m$ and ${\sim}50{\mu}m$ in diameter) of polymethyl methacrylate-coethylene glycol dimethacrylate (PMMA) microbeads as sacrificial templates. Porosity of the porous zirconia ceramics increased with decreasing the template size ratio ($8{\mu}m: 50{\mu}m$) whereas the compressive and flexural strengths of the porous zirconia ceramics increased with increasing the template size ratio. By controlling the template size ratio, sintering temperature and sintering time, it was possible to produce porous zirconia ceramics with porosities ranging from 57% to 69%. Typical flexural and compressive strength values of porous zirconia ceramics with ${\sim}60%$ porosity were ${\sim}37\;MPa$ and ${\sim}85\;MPa$, respectively.

Keywords

References

  1. V. Biasini, M. Parasporo, and A. Bellosi, "Fabrication and Characterization of $Al_2O_3$ Porous Bodies by Hot Isostatic Pressing," Thin Solid Films, 297 207-11 (1997) https://doi.org/10.1016/S0040-6090(96)09432-1
  2. Y. P. Jin and Y. T. Chou, "Thermal and Mechanical Properties of Porous Y-PSZ/Zircon Composites," Mater. Res. Innovat., 1 227-30 (1998) https://doi.org/10.1007/s100190050045
  3. J. W. Baek and D. J. Kim, "Ceramic Foams by the Self- Blowing of Polymer(in Korean)," J. Kor. Ceram. Soc., 41 [7] 555-59 (2004) https://doi.org/10.4191/KCERS.2004.41.7.555
  4. J. Adler, "Ceramic Diesel Particulate Filters," Int. J. Appl. Ceram. Technol., 2 [6] 429-39 (2005) https://doi.org/10.1111/j.1744-7402.2005.02044.x
  5. M. Fukushima, Y. Zhou, H. Miyazaki, Y. Yoshizawa, K. Hirao, Y. Iwamoto, S. Yamazaki, and T. Nagano, "Microstructural Characterization of Porous Silicon Carbide Membrane Support with and without Alumina Additive," J. Am. Ceram. Soc., 89 [5] 1523-29 (2006) https://doi.org/10.1111/j.1551-2916.2006.00931.x
  6. S. H. Lee and Y.-W. Kim, "Processing of Cellular SiC Ceramics Using Polymer Microbeads," J. Kor. Ceram. Soc., 43 [8] 458-62 (2006) https://doi.org/10.4191/KCERS.2006.43.8.458
  7. Y.-W. Kim, S. H. Kim, C. Wang, and C. B. Park, "Fab rication of Microcelluar Ceramics Using Gaseous Carbon Dioxide," J. Am Ceram. Soc., 86 [12] 2231-33 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03641.x
  8. J. H. Eom, D. H. Jang, Y.-W. Kim, I. H. Song, and H. D. Kim, "Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction(in Korean)," J. Kor. Ceram. Soc., 43 [9] 552-57 (2006) https://doi.org/10.4191/KCERS.2006.43.9.552
  9. D. H. Jang, K. Y. Lim, and Y.-W. Kim, "Effects of Additive Composition and Content on Sintered Density and Compressive Strength of Cordierite Ceramics(in Korean)," J. Kor. Ceram. Soc., 44 [4] 230-34 (2007) https://doi.org/10.4191/KCERS.2007.44.4.230
  10. J. H. Eom and Y.-W. Kim, "Fabrication of Silicon Oxycarbide Foams from Extruded Blends of Polysiloxane, Low- Density Polyethylene (LDPE), and Polymer Microbead," Met. Mater. Int., 13 [6] 521-25 (2007) https://doi.org/10.1007/BF03027913
  11. B. H. Yoon, E. J. Lee, H. E. Kim, and Y. H. Koh, "Highly Aligned Porous Silicon Carbide Ceramics by Freezing Polycarbosilane/ Camphene Solution," J. Am. Ceram. Soc., 90 [6] 1753-59 (2007) https://doi.org/10.1111/j.1551-2916.2007.01703.x
  12. Y.-W. Kim, S. H. Kim, I. H. Song, H. D. Kim, and C. B. Park, "Fabrication of Open-Cell, Microcellular Silicon Carbide Ceramics by Carbothermal Reduction," J. Am. Ceram. Soc., 88 [10] 2949-51 (2005) https://doi.org/10.1111/j.1551-2916.2005.00509.x
  13. Y.-W. Kim, J. H. Eom, C. Wang, and C. B. Park, "Processing of Porous Silicon Carbide Ceramics from Carbon- Filled Polysiloxane by Extrusion and Carbothermal Reduction," J. Am. Ceram. Soc., 91 [4] 1361-64 (2008) https://doi.org/10.1111/j.1551-2916.2008.02280.x
  14. I. K. Jun, Y. H. Koh, J. H. Song, S. H. Lee, and H. E. Kim, "Improved Compressive Strength of Reticulated Porous Zirconia Using Carbon Coated Polymeric Sponge As Novel Template," Mater. Lett., 60 2507-10 (2006) https://doi.org/10.1016/j.matlet.2006.01.031
  15. A. K. Gain and B. T. Lee, "Microstructure Control of Continuously Porous $t-ZrO_2$ Bodies Fabricated by Multi-Pass Extrusion Process," Mater. Sci. & Eng. A, 419 269-75 (2006) https://doi.org/10.1016/j.msea.2005.12.033
  16. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, and D. S. Smith, "Thermal Conductivity of Highly Porous Zirconia," J. Europ. Ceram. Soc., 26 3567-74 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.11.011
  17. A. K. Gain, H. Y. Song, and B. T. Lee, "Microstructure and Mechanical Properties of Porous Yttria Stabilized Zirconia Ceramic Using Poly Methyl Methacrylate Powder," Scripta Mater., 54 2081-85 (2006) https://doi.org/10.1016/j.scriptamat.2006.03.009
  18. Z. Y. Deng, J. F. Yang, Y. Beppu, M. Ando, and T. Ohji, "Effect of Agglomeration on Mechanical Properties of Porous Zirconia Fabricated by Partial Sintering," J. Am. Ceram. Soc., 85 [8] 1961-65 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00388.x
  19. J. H. Eom, Y.-W. Kim, I. H. Song, and H. D. Kim, "Microstructure and Properties of Porous Silicon Carbide Ceramics Fabricated by Carbothermal Reduction and Subsequent Sintering Process," Mater. Sci. Eng. A, 464 129-34 (2007) https://doi.org/10.1016/j.msea.2007.03.076
  20. S. H. Chae, J. H. Eom, Y.-W. Kim, I. H. Song, H. D. Kim, J. S. Bae, S. M. Na, and S. I. Kim, "Porosity Control of Porous Zirconia Ceramics(in Korean)," J. Kor. Ceram. Soc., 45 [1] 65-8 (2008) https://doi.org/10.4191/KCERS.2008.45.1.065