international Journal of KIMICS, Vol. 6, No. 3, September 2008

327

Design and Implementation of Transfer Buffer Sharing
Technique for Efficient Massive Data Transfer

Dae-Soo Cho, Member, KIMICS

Abstract—It is required that a server which
communicates with various client simultaneously should
have an efficient data transfer model. In Windows®
environment, the server was generally developed based
on IOCP model. Developing the IOCP model, the server
generally has one data transfer buffer per client. If the
server divides a larger data than the transfer buffer into
several fragments, there used to be a problem in sending
it to a client, because there is a conflict in a data transfer
buffer. That is, CPU requests one data-fragment transfer,
then it will request the next data-fragment transfer
successively before completing the previous request,
owing to the property of overlapped 10 model. In this
paper, we proposed the transfer buffer sharing technique
to solve the conflicting problem. The experimental result
shows that the performance of data transfer was
enhanced by 39% maximally.

Index Terms—IOCP, Buffer Sharing, Massive Data
Transfer, Client-Server System, Healthcare Monitoring

L INTRODUCTION

It is required that a server which should support real
time communication with various client simultaneously
should have an efficient data transfer model. In windows
environment, the server was generally developed based
on IOCP model. IOCP, one of the most powerful /O
model, is based on asynchronous (non-blocked),
overlapped 10. In IOCP, the server issues the read/write
operation asynchronously, and the operation will be
completed later. That is, after CPU issues the read/write
operation, it is not blocked to wait the completion of the
operation. The throughput of CPU, therefore, is higher
than in the synchronous I/O [1] [2].

Developing the IOCP model, the server generally has
one data transfer buffer per client, and this buffer must
remain valid until the I/O operation completes. If the
server divides a larger data than the transfer buffer into
several fragments, there used to be a problem in sending
it to a client, because there is a conflict in a data transfer
buffer. That is, CPU issues a write operation for a data-
fragment, and then it will successively issue another

Manuscript received March 11, 2008; revised August
5, 2008. Dae-Soo Cho is with the Division of Computer
and Information, Dongseo University, Busan, 617-716,
Korea (Tel: +82-51-320-1897, Fax: +82-51-312-2329,
Email: dscho@dongseo.ac kr)

write operation for the next data-fragment before
completing the previous write operation.

In this paper, we proposed the transfer buffer sharing
technique to solve the conflicting problem. The
experimental result shows that the performance of data
transfer was enhanced by 39% maximally. It is expected
for the server to transfer massive data efficiently.

The rest of the paper is organized as follows: In
section II, we will overview the 10 completion port. In
section III, we will explain the problem and solution
briefly, and then we will show the experimental result in
section IV. Finally, we will conclude by giving
directions for future work in section V.

I1. Overview of IOCP I/O Model

Generally, compared to the speed of CPU, I/O devices
are considered extremely slow. In synchronous /O
depicted in Fig. 1.(a), the throughput of CPU, therefore,
is very low due to the delay time. This means that the
CPU spends almost all of its time idle waiting for I/O
operations to complete.

gtart finish
| |
C_— 1
blocki
ocking
(a) Synchronous IO
start finish
| l
1
1
1]

{b) Asynchronous I/O

Fig. 1 Two different I/O models: Synchronous 1/O
model VS Asynchronous 1/0 model

Asynchronous /O (see Fig. 1.(b)) is used to improve
throughput, latency, and/or responsiveness. An
asynchronous I/O request returns immediately, leaving
the /O call pending. At some point of time, the result of
the 1/O asynchronous call must be synchronized with the

328 Dae-Soo Cho : Design and Implementation of Transfer Buffer Sharing Technique for Efficient Massive Data Transfer

main thread. This can be done in different ways. The
synchronization can be performed by using event,
asynchronous procedure calls(APC), or IOCP.

I0 Completion Port (IOCP) was introduced in
Windows to suite the needs of an architecture which
could best fit in a server application [3]. The server
application should be able to serve multiple clients with
a limited number of threads, which constitute the thread
pool. The number of these limited threads depends upon
the number of processors. An IOCP object is associated
with several I/O objects (i.e. sockets) that support
pending asynchronous I/O calls. A thread that has access
to an IOCP can be suspended untif a pending
asynchronous I/O call is finished [4] [5].

A completion port is a queue into which the operating
system puts notifications of completed overlapped I/O
requests. Once the operation completes, a notification is
sent to a worker thread that can process the result. A
socket may be associated with a completion port at any
point after creation [6].

As shown in Fig. 2, while working with IOCP, you
have to deal with three things, (1) associating a socket to
the completion port, (2) making the asynchronous I/O
call, and (3) synchronization with the thread. To get the
result from the asynchronous I/O call and to know, for
example, which client has made the I/O request, you
have to pass two parameters: the CompletionKey
parameter, and the OVERLAPPED structure.

Operation System

(1) associating a socket to the completion part

4

2 Completion Port Network Remote
; (IOCP Kemel Object) Device Host - |/
g

3 [socket

2 Completion Queue

o LT —

3

<

?:; (3) synchronization

g with the thread

=1

% Application Program Thread Poot

<

°o - Worker) { Worker

Fig. 2 1/O operation with IOCP

By using IOCP, we can overcome the "one-thread-per-
client" problem. It is commonly known that the
performance decreases heavily if the software does not
run on a true multiprocessor machine. Threads are
system resources that are neither unlimited nor cheap.
IOCP provides a way to have a few (I/O worker) threads
handle multiple clients’ input/output "fairly". The threads
are suspended, and don't use the CPU cycles until there
is something to do.

III. Massive Data Transfer

A. Problem Definition

The OVERLAPPED structure parameter is commonly
used to pass the memory buffer that is used by the
asynchronous I/O call. Generally, the "ONE-buffer-per-

client" is used in client/server communication by using
IOCP and this buffer allocation method works well
except when a server is willing to send a larger data than
the transfer buffer. Sending the larger data, the server
should divide it into several fragments which are fit for
buffer size. In the asynchronous I/O, the CPU issues a
write operation for a data-fragment, and then it will
successively issue another write operation for the next
data-fragment before completing the previous write
operation. Therefore, a data-fragment could overlap in
the buffer with the previous data-fragment which is not
sent completely yet (as shown in Fig. 3).

Start Finish
v

ABC}X{GH

Issue 1st St 7 N Finish
Write . L \ / L
Oper 123 4/ix‘\7 89
Start Fipish
i3 ‘
/l a b cdefqh
Josue 3d T

a b c de f g h|OneBuffer

Fig.3 Transfer Buffer Conflict in the Asynchronous /O
B. Simple Solution with One Buffer: OB

To simply solve the buffer conflict problem in "one-
buffer-per-client” environment, the server application
issues the write operation just for 1st data-fragment of
the large data, and then the write operation for the next
data-fragment could be issued by the worker thread. This
worker thread is activated by IOCP after the previous
write operation is completed. That means the buffer is
not empty-status. We call this method as OB (“One
Buffer”).

Operation System

/
s i Port Network Remote

—
N [socket | /’[(IOCNZemeiObbct)}' '[Device _Host |
1 socket ’/
[Completion Queue

]/E

(2) completes
the write operation
Application Program Thread Poot
E (1) issues write operation {@\ W) vee
‘L. for 1% data-fragment ‘\l.h,'fj’?/ Thread
[([z[3]4] o
large data Jhread,
(3) issues write operation
for the next data-fragment

Fig. 4 Simple Solution for Buffer Conflict Problem in
"one-buffer-per-client" Environment

C. Buffer Sharing Solution: BS

In this paper, we have proposed another solution for
the buffer conflict problem which is to assign buffers as
many as the number of data-fragment. This means that a

International Journal of KIMICS, Vol. 6, No. 3, September 2008

329

client might have several buffers if needed. Because each
data-fragment is written in different buffer, there is no
conflict any more as shown in Fig. 5.

Start Finish

¥
BCDEFGH |
ngn FTiSh

1.2 3456788 1

FTish

/{—abcdefth

Fd time

AB CDEFEGH]Bufert
T 7 345 67 8 9] 8uffer2
2 b c d o § g h] Bufers

Fig. 5 Example: Three Buffers for One Client

These buffers could be (1) dynamically allocated, or
(2) statically reused from a buffer pool which is
consisted of buffers which have been allocated. In
general, to allocate and free memory is expensive,
therefore we should reuse buffers. We call this method as
BS (“Buffer Sharing”). Fig. 6 shows the memory
allocation and de-allocation model for one-buffer-per-
client and buffer sharing. Buffer sharing means that the
buffers in a pool are not dedicated by some specific
clients, but could be used by any client.

2 2
Operation System g Operation System g
5 3
~ ~
Y Application Program o
2w Q 2
(-3; clientt buffer =
g / N Buffer Pool ?3
@ ” @
cliont2 @
g / et a
2 3
g @
- cliantd
buffer |

(b) buffor sharing: Cliart 1 uses 4 buffers.

(2} one-buffer-per-client

Fig. 6 Memory Allocation & De-allocation Model

There certainly occurs a problem in one-buffer model.
Because the server does not communicated with all of
the clients concurrently, a lot of buffers allocated by
clients that are not communicated, but just connected to
the server are frequently not used for a while. In this case,
due to the limit of available memory resources of the
server, the number of client of one buffer model is less
than that of buffer sharing model.

IV. EXPERIMENTAL EVALUATION

A. Test Environment

In this paper, we have evaluated the massive data
transfer speed in order to compare BS proposed in this
paper with OB. The Test environment for evaluation is

as follows:
- CPU: Intel Pentium 4 2.80GHz
- RAM: Samsung DDR 1.75GB
- 0/S: Windows XP Professional SP 2
- Buffer Size: 4Kbyte
- Number of IOCP Worker Thread: 4

The parameters for performance evaluations are as
follows. The size of transfer data ranges from 10 to 1000
times larger than the size of transfer buffer (4KB). That
is, we have evaluated the performance of data transfer
with massive data of which size is maximally 1000 times
larger than the buffer size.

- The size of transfer data: 10*4, 100*4, 1000*4(KB)

- The number of client: 10, 100

- The size of buffer pool: 1000*4(KB)

B. Evaluation Results

The massive data transfer speed evaluated in this
paper is calculated as data size divided by elapsed time
for the client to receive from the 1st data-segment to the
last data-segment. Fig. 7 shows the evaluation results.
The y-axis means the ratio of data transfer speed of BS
over data transfer speed of OB. Ten hundred percent
means that two methods have equal performance. The
ratio value above 100% means that BS method has better
performance than OB method. The evaluation results
range from 98% to 105.9%.

The ratio of data transfer speed (BS/OB)

100 1000
The size of transfer data (x 4KB)

The number fo Client | @1 W10 0100

Fig. 7 The Ratio of Data Transfer Speed: Evaluation results
are dependent on network environment. The Server
and clients are different machines.

There is a few difference between OB method and BS
method, because the data transfer speed itself depends on
network environment. Because the buffer sharing make
the throughput of CPU higher, another performance
measure is required. In this paper, therefore, the ratio of
throughput is evaluated by loading the server and the
clients at the same machines. The experimental results
depicted in Fig. 8 demonstrate that the proposed buffer
sharing method performs maximally 39% better than the
one buffer method.

330 Dae-Soo Cho : Design and implementation of Transfer Buffer Sharing Technique for Efficient Massive Data Transfer

The ratio of throughput (BS/OB)

140.0%

130.0%
120.0%
110.0%
100.0%

90.0%

10 100 1000
The size of transfer data (x 4KB)

The nurrber fo Client = |10 D16éj ’

Fig. 8 The Ratio of Throughput: Evaluation results are
independent of network environment. The Server
and clients run at the same machines.

V. CONCLUSIONS

In this paper, we have proposed transfer buffer sharing
method in order to solve the buffer conflict problem that
arises on transferring massive data while using IOCP I/O
model. Experimental tests show that buffer sharing
method performs better than the previous method using
one buffer per client. It is expected that this buffer
sharing method would be applicable to develop the
server with higher throughput. As future work, we
should revise the cost model and perform the
experimental tests with varying parameters, in order to
decide the optimal size of buffer pool according to the
number of client and the size of data.

ACKNOWLEDGMENT

This research was supported by a grant
(08KLSGCO5) from Cutting-edge Urban Development
- Korean Land Spatialization Research Project funded
by Ministry of Land, Transport and Maritime Affairs
and by the Dongseo University research grant.

REFERENCES

[1] J. Richter and J. D. Clark, Programming Server-Side
Application for Windows 2000, Microsoft Press,
2000

[2] Anthony Jone and Jim Ohlund, Network
Programming for Microsoft Windows, Microsoft
Press, pp.227-271, 1999

[3] Dinesh Ahuja, “IOCompletion Port Technique and
Asynchoronos /O Operartion,” Available:
http://www.codeproject.com/internet/IOCompletion
Port.asp, 2005

[4] Amin Gholiha, “A simple IOCP Server/Client
Class,” Available: http://www.codeproject.com/
internet/iocp_server_client.asp, 2006

[5] Anthony Jones and Amol Deshpande, “Windows
Sockets 2.0: Write Scalable Winsock Apps Using

Completion Ports,” Available: http://msdn.microsoft.
com/msdnmag/issues/1000/winsock/, 2005

[6] Len Holgate, “A reusable, high performance,
socket server class - Part 1-6,” Available:
http://www.codeproject.com/internet/JBSocketServe
rl.asp, 2002

{71 Oz Ben Eliezer, “Writing scalable server
applications using 10Cp,” Available:
http://www.codeproject.comv/internet/iocp.asp, 2001

Dae-Soo Cho
received the B.S., M.S., and Ph.D.
degrees in the Computer
Engineering from Pusan National
University in 1995, 1997, 2001,
respectively. He was on the
technical staff in ETRI from 2001 to
: 2004. In 2004, he joined a faculty
member of the Division of Computer and Information in
Dongseo University. His research interests include GIS,
spatio-temporal databases, LBS, and stream data
processing.

